非编码 RNA 在阿尔茨海默病中的作用:发病机制、新型生物标记物和潜在治疗靶点。

IF 2.7 4区 医学 Q3 NEUROSCIENCES CNS & neurological disorders drug targets Pub Date : 2024-01-01 DOI:10.2174/1871527322666230519113201
Othman Saleh, Khaled Albakri, Abdalrahmn Altiti, Iser Abutair, Suhaib Shalan, Omar Bassam Mohd, Ahmed Negida, Gohar Mushtaq, Mohammad A Kamal
{"title":"非编码 RNA 在阿尔茨海默病中的作用:发病机制、新型生物标记物和潜在治疗靶点。","authors":"Othman Saleh, Khaled Albakri, Abdalrahmn Altiti, Iser Abutair, Suhaib Shalan, Omar Bassam Mohd, Ahmed Negida, Gohar Mushtaq, Mohammad A Kamal","doi":"10.2174/1871527322666230519113201","DOIUrl":null,"url":null,"abstract":"<p><p>Long non-coding RNAs (IncRNAs) are regulatory RNA transcripts that have recently been associated with the onset of many neurodegenerative illnesses, including Alzheimer's disease (AD). Several IncRNAs have been found to be associated with AD pathophysiology, each with a distinct mechanism. In this review, we focused on the role of IncRNAs in the pathogenesis of AD and their potential as novel biomarkers and therapeutic targets. Searching for relevant articles was done using the PubMed and Cochrane library databases. Studies had to be published in full text in English in order to be considered. Some IncRNAs were found to be upregulated, while others were downregulated. Dysregulation of IncRNAs expression may contribute to AD pathogenesis. Their effects manifest as the synthesis of beta-amyloid (Aβ) plaques increases, thereby altering neuronal plasticity, inducing inflammation, and promoting apoptosis. Despite the need for more investigations, IncRNAs could potentially increase the sensitivity of early detection of AD. Until now, there has been no effective treatment for AD. Hence, InRNAs are promising molecules and may serve as potential therapeutic targets. Although several dysregulated AD-associated lncRNAs have been discovered, the functional characterization of most lncRNAs is still lacking.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":"731-745"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Non-coding RNAs in Alzheimer's Disease: Pathogenesis, Novel Biomarkers, and Potential Therapeutic Targets.\",\"authors\":\"Othman Saleh, Khaled Albakri, Abdalrahmn Altiti, Iser Abutair, Suhaib Shalan, Omar Bassam Mohd, Ahmed Negida, Gohar Mushtaq, Mohammad A Kamal\",\"doi\":\"10.2174/1871527322666230519113201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long non-coding RNAs (IncRNAs) are regulatory RNA transcripts that have recently been associated with the onset of many neurodegenerative illnesses, including Alzheimer's disease (AD). Several IncRNAs have been found to be associated with AD pathophysiology, each with a distinct mechanism. In this review, we focused on the role of IncRNAs in the pathogenesis of AD and their potential as novel biomarkers and therapeutic targets. Searching for relevant articles was done using the PubMed and Cochrane library databases. Studies had to be published in full text in English in order to be considered. Some IncRNAs were found to be upregulated, while others were downregulated. Dysregulation of IncRNAs expression may contribute to AD pathogenesis. Their effects manifest as the synthesis of beta-amyloid (Aβ) plaques increases, thereby altering neuronal plasticity, inducing inflammation, and promoting apoptosis. Despite the need for more investigations, IncRNAs could potentially increase the sensitivity of early detection of AD. Until now, there has been no effective treatment for AD. Hence, InRNAs are promising molecules and may serve as potential therapeutic targets. Although several dysregulated AD-associated lncRNAs have been discovered, the functional characterization of most lncRNAs is still lacking.</p>\",\"PeriodicalId\":10456,\"journal\":{\"name\":\"CNS & neurological disorders drug targets\",\"volume\":\" \",\"pages\":\"731-745\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS & neurological disorders drug targets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1871527322666230519113201\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1871527322666230519113201","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

长非编码 RNA(IncRNA)是一种调节性 RNA 转录物,最近被发现与包括阿尔茨海默病(AD)在内的多种神经退行性疾病的发病有关。目前已发现多种 IncRNA 与阿尔茨海默病的病理生理学有关,每一种都有其独特的机制。在这篇综述中,我们重点探讨了IncRNA在AD发病机制中的作用及其作为新型生物标记物和治疗靶点的潜力。我们使用 PubMed 和 Cochrane 图书馆数据库搜索相关文章。研究必须以英文全文发表才能被考虑。结果发现,一些 IncRNA 上调,而另一些则下调。IncRNAs表达失调可能是导致AD发病的原因之一。它们的作用表现为β-淀粉样蛋白(Aβ)斑块的合成增加,从而改变神经元的可塑性、诱发炎症和促进细胞凋亡。尽管还需要更多的研究,IncRNAs 仍有可能提高早期检测 AD 的灵敏度。迄今为止,尚无有效的治疗方法。因此,InRNAs 是很有前景的分子,可作为潜在的治疗靶点。虽然已经发现了一些与 AD 相关的 lncRNA,但大多数 lncRNA 的功能特征仍然缺乏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of Non-coding RNAs in Alzheimer's Disease: Pathogenesis, Novel Biomarkers, and Potential Therapeutic Targets.

Long non-coding RNAs (IncRNAs) are regulatory RNA transcripts that have recently been associated with the onset of many neurodegenerative illnesses, including Alzheimer's disease (AD). Several IncRNAs have been found to be associated with AD pathophysiology, each with a distinct mechanism. In this review, we focused on the role of IncRNAs in the pathogenesis of AD and their potential as novel biomarkers and therapeutic targets. Searching for relevant articles was done using the PubMed and Cochrane library databases. Studies had to be published in full text in English in order to be considered. Some IncRNAs were found to be upregulated, while others were downregulated. Dysregulation of IncRNAs expression may contribute to AD pathogenesis. Their effects manifest as the synthesis of beta-amyloid (Aβ) plaques increases, thereby altering neuronal plasticity, inducing inflammation, and promoting apoptosis. Despite the need for more investigations, IncRNAs could potentially increase the sensitivity of early detection of AD. Until now, there has been no effective treatment for AD. Hence, InRNAs are promising molecules and may serve as potential therapeutic targets. Although several dysregulated AD-associated lncRNAs have been discovered, the functional characterization of most lncRNAs is still lacking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
158
审稿时长
6-12 weeks
期刊介绍: Aims & Scope CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes. CNS & Neurological Disorders - Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of CNS & neurological drug targets. The journal also accepts for publication original research articles, letters, reviews and drug clinical trial studies. As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.
期刊最新文献
Choice and Timing of Antithrombotic after Ischemic Stroke, Intracerebral Hemorrhage or Cerebral Venous Thrombosis. New Psychometric Strategies for the Evaluation of Affective, Cognitive, and Psychosocial Functioning in Unipolar versus Bipolar Depression: Impact of Drug Treatment. Curbing Rhes Actions: Mechanism-based Molecular Target for Huntington's Disease and Tauopathies. G Protein-coupled Receptors (GPCRs) as Potential Therapeutics for Psychiatric Disorders. Relation between Apolipoprotein E in Alzheimer's Disease and SARS-CoV-2 and their Treatment Strategy: A Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1