多细胞真核细胞中的分泌耦合细胞自主回路。

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Systems Biology Pub Date : 2023-04-12 Epub Date: 2023-03-01 DOI:10.15252/msb.202211127
Lingxia Qiao, Saptarshi Sinha, Amer Ali Abd El-Hafeez, I-Chung Lo, Krishna K Midde, Tony Ngo, Nicolas Aznar, Inmaculada Lopez-Sanchez, Vijay Gupta, Marilyn G Farquhar, Padmini Rangamani, Pradipta Ghosh
{"title":"多细胞真核细胞中的分泌耦合细胞自主回路。","authors":"Lingxia Qiao, Saptarshi Sinha, Amer Ali Abd El-Hafeez, I-Chung Lo, Krishna K Midde, Tony Ngo, Nicolas Aznar, Inmaculada Lopez-Sanchez, Vijay Gupta, Marilyn G Farquhar, Padmini Rangamani, Pradipta Ghosh","doi":"10.15252/msb.202211127","DOIUrl":null,"url":null,"abstract":"<p><p>Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to \"secrete-and-sense\" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090951/pdf/","citationCount":"0","resultStr":"{\"title\":\"A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells.\",\"authors\":\"Lingxia Qiao, Saptarshi Sinha, Amer Ali Abd El-Hafeez, I-Chung Lo, Krishna K Midde, Tony Ngo, Nicolas Aznar, Inmaculada Lopez-Sanchez, Vijay Gupta, Marilyn G Farquhar, Padmini Rangamani, Pradipta Ghosh\",\"doi\":\"10.15252/msb.202211127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to \\\"secrete-and-sense\\\" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090951/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15252/msb.202211127\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15252/msb.202211127","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症是一种复杂的自主系统,在生长信号传导方面具有自足性。癌细胞 "分泌并感知 "生长因子(GFs)的能力为自主生长提供了动力:这是一种鲜为人知的现象。在这里,我们采用一种计算与实验相结合的方法,剖析了分泌途径中的反馈耦合 GTP 酶回路对分泌耦合自主性的影响。当Ras超家族单体GTP酶Arf1和异三聚体GTP酶Giαβγ及其相应的GAP和GEF被GIV/Girdin耦合时,该回路就形成了。回路中的一个正向回路和两个关键负反馈回路形成了闭环控制,使两个 GTP 酶能够相互核心调节,并将预期的 Arf1 依赖性分泌的开关样行为转化为意想不到的感应和分泌的剂量反应排列行为。这种行为转化为细胞存活,并通过与刺激成比例的分泌自我维持。蛋白质组学研究和蛋白质-蛋白质相互作用网络分析指出,GF(如表皮 GF)是这种自我维持的关键刺激因素。研究结果突显了癌细胞中两种生物开关耦合的增强对于多尺度反馈控制以实现生长因子分泌耦合自主至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells.

Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
期刊最新文献
Identifying T-cell clubs by embracing the local harmony between TCR and gene expressions. XCMS-METLIN: data-driven metabolite, lipid, and chemical analysis. Author Correction: Predictive evolution of metabolic phenotypes using model-designed environments. Correction of a widespread bias in pooled chemical genomics screens improves their interpretability. Prediction of the 3D cancer genome from whole-genome sequencing using InfoHiC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1