个人成长轨迹的评估与预测。

IF 1.2 4区 医学 Q2 ANTHROPOLOGY Annals of Human Biology Pub Date : 2023-02-01 DOI:10.1080/03014460.2023.2190619
Stef van Buuren
{"title":"个人成长轨迹的评估与预测。","authors":"Stef van Buuren","doi":"10.1080/03014460.2023.2190619","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Conventional growth charts offer limited guidance to track individual growth.</p><p><strong>Aim: </strong>To explore new approaches to improve the evaluation and prediction of individual growth trajectories.</p><p><strong>Subjects and methods: </strong>We generalise the conditional SDS gain to multiple historical measurements, using the Cole correlation model to find correlations at exact ages, the sweep operator to find regression weights and a specified longitudinal reference. We explain the various steps of the methodology and validate and demonstrate the method using empirical data from the SMOCC study with 1985 children measured during ten visits at ages 0-2 years.</p><p><strong>Results: </strong>The method performs according to statistical theory. We apply the method to estimate the referral rates for a given screening policy. We visualise the child's trajectory as an <i>adaptive growth chart</i> featuring two new graphical elements: <i>amplitude</i> (for evaluation) and <i>flag</i> (for prediction). The relevant calculations take about 1 millisecond per child.</p><p><strong>Conclusion: </strong>Longitudinal references capture the dynamic nature of child growth. The adaptive growth chart for individual monitoring works with exact ages, corrects for regression to the mean, has a known distribution at any pair of ages and is fast. We recommend the method for evaluating and predicting individual child growth.</p>","PeriodicalId":50765,"journal":{"name":"Annals of Human Biology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation and prediction of individual growth trajectories.\",\"authors\":\"Stef van Buuren\",\"doi\":\"10.1080/03014460.2023.2190619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Conventional growth charts offer limited guidance to track individual growth.</p><p><strong>Aim: </strong>To explore new approaches to improve the evaluation and prediction of individual growth trajectories.</p><p><strong>Subjects and methods: </strong>We generalise the conditional SDS gain to multiple historical measurements, using the Cole correlation model to find correlations at exact ages, the sweep operator to find regression weights and a specified longitudinal reference. We explain the various steps of the methodology and validate and demonstrate the method using empirical data from the SMOCC study with 1985 children measured during ten visits at ages 0-2 years.</p><p><strong>Results: </strong>The method performs according to statistical theory. We apply the method to estimate the referral rates for a given screening policy. We visualise the child's trajectory as an <i>adaptive growth chart</i> featuring two new graphical elements: <i>amplitude</i> (for evaluation) and <i>flag</i> (for prediction). The relevant calculations take about 1 millisecond per child.</p><p><strong>Conclusion: </strong>Longitudinal references capture the dynamic nature of child growth. The adaptive growth chart for individual monitoring works with exact ages, corrects for regression to the mean, has a known distribution at any pair of ages and is fast. We recommend the method for evaluating and predicting individual child growth.</p>\",\"PeriodicalId\":50765,\"journal\":{\"name\":\"Annals of Human Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Human Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03014460.2023.2190619\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Human Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03014460.2023.2190619","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

背景:传统的成长图表对跟踪个人成长提供了有限的指导。目的:探索改进个体生长轨迹评价与预测的新方法。研究对象和方法:我们将条件SDS增益推广到多个历史测量,使用Cole相关模型找到准确年龄的相关性,使用扫描算子找到回归权重和指定的纵向参考。我们解释了方法的各个步骤,并使用SMOCC研究的经验数据验证和证明了该方法,该研究对1985名0-2岁儿童进行了10次访问。结果:该方法符合统计学理论。我们应用该方法来估计一个给定的筛选政策的转诊率。我们将儿童的成长轨迹可视化为具有两个新的图形元素的自适应生长图表:振幅(用于评估)和标志(用于预测)。每个孩子的相关计算大约需要1毫秒。结论:纵向文献反映了儿童生长的动态性。用于个体监测的自适应生长图适用于精确的年龄,校正回归均值,在任何一对年龄都有一个已知的分布,而且速度很快。我们推荐评估和预测儿童个体生长的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation and prediction of individual growth trajectories.

Background: Conventional growth charts offer limited guidance to track individual growth.

Aim: To explore new approaches to improve the evaluation and prediction of individual growth trajectories.

Subjects and methods: We generalise the conditional SDS gain to multiple historical measurements, using the Cole correlation model to find correlations at exact ages, the sweep operator to find regression weights and a specified longitudinal reference. We explain the various steps of the methodology and validate and demonstrate the method using empirical data from the SMOCC study with 1985 children measured during ten visits at ages 0-2 years.

Results: The method performs according to statistical theory. We apply the method to estimate the referral rates for a given screening policy. We visualise the child's trajectory as an adaptive growth chart featuring two new graphical elements: amplitude (for evaluation) and flag (for prediction). The relevant calculations take about 1 millisecond per child.

Conclusion: Longitudinal references capture the dynamic nature of child growth. The adaptive growth chart for individual monitoring works with exact ages, corrects for regression to the mean, has a known distribution at any pair of ages and is fast. We recommend the method for evaluating and predicting individual child growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Human Biology
Annals of Human Biology 生物-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
5.90%
发文量
46
审稿时长
1 months
期刊介绍: Annals of Human Biology is an international, peer-reviewed journal published six times a year in electronic format. The journal reports investigations on the nature, development and causes of human variation, embracing the disciplines of human growth and development, human genetics, physical and biological anthropology, demography, environmental physiology, ecology, epidemiology and global health and ageing research.
期刊最新文献
Commentary: “Exposure to ambient air pollution-does it affect semen quality and the level of reproductive hormones?” by Michał Radwan, Joanna Jurewicz, Kinga Polańska, Wojciech Sobala, Paweł Radwan, Michał Bochenek and Wojciech Hanke Underweight in young Japanese women over time: a longitudinal retrospective study of the change in body mass index from ages 6 to 20 years MTHFR and MTRR gene polymorphisms in patients with chronic hepatitis B virus infections in Zigong, Sichuan Province Causal relationship of genetically predicted particulate matter 2.5 level with Alzheimer’s disease and the mediating effect of dehydroepiandrosterone sulphate Total daily energy expenditure and elevated water turnover in a small-scale semi-nomadic pastoralist society from Northern Kenya
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1