Sahar Ahmad, Fang Nan, Ye Wu, Zhengwang Wu, Weili Lin, Li Wang, Gang Li, Di Wu, Pew-Thian Yap
{"title":"人一生中多部位皮层数据的协调性","authors":"Sahar Ahmad, Fang Nan, Ye Wu, Zhengwang Wu, Weili Lin, Li Wang, Gang Li, Di Wu, Pew-Thian Yap","doi":"10.1007/978-3-031-21014-3_23","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimaging data harmonization has become a prerequisite in integrative data analytics for standardizing a wide variety of data collected from multiple studies and enabling interdisciplinary research. The lack of standardized image acquisition and computational procedures introduces non-biological variability and inconsistency in multi-site data, complicating downstream statistical analyses. Here, we propose a novel statistical technique to retrospectively harmonize multi-site cortical data collected longitudinally and cross-sectionally between birth and 100 years. We demonstrate that our method can effectively eliminate non-biological disparities from cortical thickness and myelination measurements, while preserving biological variation across the entire lifespan. Our harmonization method will foster large-scale population studies by providing comparable data required for investigating developmental and aging processes.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"13583 ","pages":"220-229"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134963/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harmonization of Multi-site Cortical Data Across the Human Lifespan.\",\"authors\":\"Sahar Ahmad, Fang Nan, Ye Wu, Zhengwang Wu, Weili Lin, Li Wang, Gang Li, Di Wu, Pew-Thian Yap\",\"doi\":\"10.1007/978-3-031-21014-3_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroimaging data harmonization has become a prerequisite in integrative data analytics for standardizing a wide variety of data collected from multiple studies and enabling interdisciplinary research. The lack of standardized image acquisition and computational procedures introduces non-biological variability and inconsistency in multi-site data, complicating downstream statistical analyses. Here, we propose a novel statistical technique to retrospectively harmonize multi-site cortical data collected longitudinally and cross-sectionally between birth and 100 years. We demonstrate that our method can effectively eliminate non-biological disparities from cortical thickness and myelination measurements, while preserving biological variation across the entire lifespan. Our harmonization method will foster large-scale population studies by providing comparable data required for investigating developmental and aging processes.</p>\",\"PeriodicalId\":74092,\"journal\":{\"name\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"volume\":\"13583 \",\"pages\":\"220-229\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134963/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning in medical imaging. MLMI (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-21014-3_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-21014-3_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Harmonization of Multi-site Cortical Data Across the Human Lifespan.
Neuroimaging data harmonization has become a prerequisite in integrative data analytics for standardizing a wide variety of data collected from multiple studies and enabling interdisciplinary research. The lack of standardized image acquisition and computational procedures introduces non-biological variability and inconsistency in multi-site data, complicating downstream statistical analyses. Here, we propose a novel statistical technique to retrospectively harmonize multi-site cortical data collected longitudinally and cross-sectionally between birth and 100 years. We demonstrate that our method can effectively eliminate non-biological disparities from cortical thickness and myelination measurements, while preserving biological variation across the entire lifespan. Our harmonization method will foster large-scale population studies by providing comparable data required for investigating developmental and aging processes.