Daphné Autran, George W Bassel, Eunyoung Chae, Daphne Ezer, Ali Ferjani, Christian Fleck, Olivier Hamant, Félix P Hartmann, Yuling Jiao, Iain G Johnston, Dorota Kwiatkowska, Boon L Lim, Ari Pekka Mahönen, Richard J Morris, Bela M Mulder, Naomi Nakayama, Ross Sozzani, Lucia C Strader, Kirsten Ten Tusscher, Minako Ueda, Sebastian Wolf
{"title":"什么是定量植物生物学?","authors":"Daphné Autran, George W Bassel, Eunyoung Chae, Daphne Ezer, Ali Ferjani, Christian Fleck, Olivier Hamant, Félix P Hartmann, Yuling Jiao, Iain G Johnston, Dorota Kwiatkowska, Boon L Lim, Ari Pekka Mahönen, Richard J Morris, Bela M Mulder, Naomi Nakayama, Ross Sozzani, Lucia C Strader, Kirsten Ten Tusscher, Minako Ueda, Sebastian Wolf","doi":"10.1017/qpb.2021.8","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.</p>","PeriodicalId":20825,"journal":{"name":"Quantitative Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/71/2f/S2632882821000084a.PMC10095877.pdf","citationCount":"0","resultStr":"{\"title\":\"What is quantitative plant biology?\",\"authors\":\"Daphné Autran, George W Bassel, Eunyoung Chae, Daphne Ezer, Ali Ferjani, Christian Fleck, Olivier Hamant, Félix P Hartmann, Yuling Jiao, Iain G Johnston, Dorota Kwiatkowska, Boon L Lim, Ari Pekka Mahönen, Richard J Morris, Bela M Mulder, Naomi Nakayama, Ross Sozzani, Lucia C Strader, Kirsten Ten Tusscher, Minako Ueda, Sebastian Wolf\",\"doi\":\"10.1017/qpb.2021.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.</p>\",\"PeriodicalId\":20825,\"journal\":{\"name\":\"Quantitative Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/71/2f/S2632882821000084a.PMC10095877.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/qpb.2021.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qpb.2021.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.