马卵泡液中与卵泡选择和排卵相关的细胞外囊泡偶联microrna的动力学。

IF 3.6 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Molecular human reproduction Pub Date : 2023-04-03 DOI:10.1093/molehr/gaad009
Samuel Gebremedhn, Ahmed Gad, Ghassan M Ishak, Nico G Menjivar, Melba O Gastal, Jean M Feugang, Radek Prochazka, Dawit Tesfaye, Eduardo L Gastal
{"title":"马卵泡液中与卵泡选择和排卵相关的细胞外囊泡偶联microrna的动力学。","authors":"Samuel Gebremedhn,&nbsp;Ahmed Gad,&nbsp;Ghassan M Ishak,&nbsp;Nico G Menjivar,&nbsp;Melba O Gastal,&nbsp;Jean M Feugang,&nbsp;Radek Prochazka,&nbsp;Dawit Tesfaye,&nbsp;Eduardo L Gastal","doi":"10.1093/molehr/gaad009","DOIUrl":null,"url":null,"abstract":"<p><p>Innumerable similarities in reproductive cyclicity and hormonal alterations highlight the considerable utility of the mare to study aspects of follicular dynamics and reproductive function in view of the largely constricted, human research subjects. The bi-directional communication between the growing oocyte and the surrounding somatic cells embodies the hallmark of mammalian follicular development, partially mediated by extracellular vesicles (EVs) encapsulated with microRNAs (miRNAs) and present in the follicular fluid (FF). Here, we aimed to decipher the dynamics of the miRNAs in EVs from equine FF aspirated in vivo during different stages of follicular development, namely, predeviation (PreDev; 18-20 mm), deviation (Dev; 22-25 mm), postdeviation (PostDev; 26-29 mm), preovulatory (PreOV; 30-35 mm), and impending ovulation (IMP; ∼40 mm). Approximately 176 known miRNAs were found in all groups with 144 mutually detected among all groups. Cluster analysis exhibited 15 different expression patterns during follicular development. Among these patterns, a group of 22 miRNAs (including miR-146b-5p, miR-140, and miR-143) exhibited a sharp reduction in expression from the PreDev until the PreOV stage. Another cluster of 23 miRNAs (including miR-106b, miR-199a-5p, and miR-125a-5p) exhibited a stable expression pattern at the PreDev stage until the PostDev stage, with a significant increase at the PreOV stage followed by a significant decrease at the IMP stage. In conclusion, this study provides greater insights into the stage-specific expression dynamics of FF EV-miRNAs during equine follicular development, which may propose novel approaches to improve ART and provide new biomarkers to facilitate the assessment of ovarian pathophysiological conditions.</p>","PeriodicalId":18759,"journal":{"name":"Molecular human reproduction","volume":"29 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321592/pdf/gaad009.pdf","citationCount":"1","resultStr":"{\"title\":\"Dynamics of extracellular vesicle-coupled microRNAs in equine follicular fluid associated with follicle selection and ovulation.\",\"authors\":\"Samuel Gebremedhn,&nbsp;Ahmed Gad,&nbsp;Ghassan M Ishak,&nbsp;Nico G Menjivar,&nbsp;Melba O Gastal,&nbsp;Jean M Feugang,&nbsp;Radek Prochazka,&nbsp;Dawit Tesfaye,&nbsp;Eduardo L Gastal\",\"doi\":\"10.1093/molehr/gaad009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Innumerable similarities in reproductive cyclicity and hormonal alterations highlight the considerable utility of the mare to study aspects of follicular dynamics and reproductive function in view of the largely constricted, human research subjects. The bi-directional communication between the growing oocyte and the surrounding somatic cells embodies the hallmark of mammalian follicular development, partially mediated by extracellular vesicles (EVs) encapsulated with microRNAs (miRNAs) and present in the follicular fluid (FF). Here, we aimed to decipher the dynamics of the miRNAs in EVs from equine FF aspirated in vivo during different stages of follicular development, namely, predeviation (PreDev; 18-20 mm), deviation (Dev; 22-25 mm), postdeviation (PostDev; 26-29 mm), preovulatory (PreOV; 30-35 mm), and impending ovulation (IMP; ∼40 mm). Approximately 176 known miRNAs were found in all groups with 144 mutually detected among all groups. Cluster analysis exhibited 15 different expression patterns during follicular development. Among these patterns, a group of 22 miRNAs (including miR-146b-5p, miR-140, and miR-143) exhibited a sharp reduction in expression from the PreDev until the PreOV stage. Another cluster of 23 miRNAs (including miR-106b, miR-199a-5p, and miR-125a-5p) exhibited a stable expression pattern at the PreDev stage until the PostDev stage, with a significant increase at the PreOV stage followed by a significant decrease at the IMP stage. In conclusion, this study provides greater insights into the stage-specific expression dynamics of FF EV-miRNAs during equine follicular development, which may propose novel approaches to improve ART and provide new biomarkers to facilitate the assessment of ovarian pathophysiological conditions.</p>\",\"PeriodicalId\":18759,\"journal\":{\"name\":\"Molecular human reproduction\",\"volume\":\"29 4\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321592/pdf/gaad009.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular human reproduction\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/molehr/gaad009\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/molehr/gaad009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

生殖周期和激素变化的无数相似之处突出了母马在研究卵泡动力学和生殖功能方面的相当大的效用,因为人类研究对象很大程度上受到限制。生长中的卵母细胞与周围体细胞之间的双向交流体现了哺乳动物卵泡发育的特征,部分由存在于卵泡液(FF)中被microRNAs (miRNAs)包裹的细胞外囊泡(ev)介导。在这里,我们的目的是破译从马FF体内抽吸的EVs中提取的mirna在卵泡发育的不同阶段的动态,即预偏离(PreDev;18- 20mm),偏差(Dev;22- 25mm),后偏差(PostDev;26-29 mm),排卵期前(PreOV;30-35 mm)和即将排卵(IMP;∼40毫米)。在所有组中发现了大约176个已知的mirna,其中144个在所有组中相互检测到。聚类分析显示在卵泡发育过程中有15种不同的表达模式。在这些模式中,一组22种mirna(包括miR-146b-5p, miR-140和miR-143)从PreDev到PreOV阶段表达急剧减少。另一组23个mirna(包括miR-106b、miR-199a-5p和miR-125a-5p)在pre - dev阶段至post - dev阶段表现出稳定的表达模式,在PreOV阶段显著增加,在IMP阶段显著减少。总之,本研究对马卵泡发育过程中FF ev - mirna的分期特异性表达动态有了更深入的了解,这可能为改善ART提供新的方法,并为评估卵巢病理生理状况提供新的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of extracellular vesicle-coupled microRNAs in equine follicular fluid associated with follicle selection and ovulation.

Innumerable similarities in reproductive cyclicity and hormonal alterations highlight the considerable utility of the mare to study aspects of follicular dynamics and reproductive function in view of the largely constricted, human research subjects. The bi-directional communication between the growing oocyte and the surrounding somatic cells embodies the hallmark of mammalian follicular development, partially mediated by extracellular vesicles (EVs) encapsulated with microRNAs (miRNAs) and present in the follicular fluid (FF). Here, we aimed to decipher the dynamics of the miRNAs in EVs from equine FF aspirated in vivo during different stages of follicular development, namely, predeviation (PreDev; 18-20 mm), deviation (Dev; 22-25 mm), postdeviation (PostDev; 26-29 mm), preovulatory (PreOV; 30-35 mm), and impending ovulation (IMP; ∼40 mm). Approximately 176 known miRNAs were found in all groups with 144 mutually detected among all groups. Cluster analysis exhibited 15 different expression patterns during follicular development. Among these patterns, a group of 22 miRNAs (including miR-146b-5p, miR-140, and miR-143) exhibited a sharp reduction in expression from the PreDev until the PreOV stage. Another cluster of 23 miRNAs (including miR-106b, miR-199a-5p, and miR-125a-5p) exhibited a stable expression pattern at the PreDev stage until the PostDev stage, with a significant increase at the PreOV stage followed by a significant decrease at the IMP stage. In conclusion, this study provides greater insights into the stage-specific expression dynamics of FF EV-miRNAs during equine follicular development, which may propose novel approaches to improve ART and provide new biomarkers to facilitate the assessment of ovarian pathophysiological conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular human reproduction
Molecular human reproduction 生物-发育生物学
CiteScore
8.30
自引率
0.00%
发文量
37
审稿时长
6-12 weeks
期刊介绍: MHR publishes original research reports, commentaries and reviews on topics in the basic science of reproduction, including: reproductive tract physiology and pathology; gonad function and gametogenesis; fertilization; embryo development; implantation; and pregnancy and parturition. Irrespective of the study subject, research papers should have a mechanistic aspect.
期刊最新文献
Endometrial stromal cell signaling and microRNA exosome content in women with adenomyosis. mTOR inhibitors as potential therapeutics for endometriosis: a narrative review. Gene expression analysis of ovarian follicles and stromal cells in girls with Turner syndrome. Ectopic endometrial stromal cell-derived extracellular vesicles encapsulating microRNA-25-3p induce endometrial collagen I deposition impairing decidualization in endometriosis. Placental gene therapy in nonhuman primates: a pilot study of maternal, placental, and fetal response to non-viral, polymeric nanoparticle delivery of IGF1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1