{"title":"利用移植前数据预测老年供肾在移植后的肾功能。","authors":"Paola Martin, Diwakar Gupta, Timothy Pruett","doi":"10.1002/nav.22083","DOIUrl":null,"url":null,"abstract":"<p><p>This paper provides a methodology for predicting post-transplant kidney function, that is, the 1-year post-transplant estimated Glomerular Filtration Rate (eGFR-1) for each donor-candidate pair. We apply customized machine-learning algorithms to pre-transplant donor and recipient data to determine the probability of achieving an eGFR-1 of at least 30 ml/min. This threshold was chosen because there is insufficient survival benefit if the kidney fails to generate an eGFR-1 ≥ 30 ml/min. For some donor-candidate pairs, the developed algorithm provides highly accurate predictions. For others, limitations of previous transplants' data results in noisier predictions. However, because the same kidney is offered to many candidates, we identify those pairs for whom the predictions are highly accurate. Out of 6977 discarded older-donor kidneys that were a match with at least one transplanted kidney, 5282 had one or more identified candidate, who were offered that kidney, did not accept any other offer, and would have had ≥80% chance of achieving eGFR-1 ≥ 30 ml/min, had the kidney been transplanted. We also show that transplants with ≥80% chance of achieving eGFR-1 ≥ 30 ml/min and that survive 1 year have higher 10-year death-censored graft survival probabilities than all older-donor transplants that survive 1 year (73.61% vs. 70.48%, respectively).</p>","PeriodicalId":49772,"journal":{"name":"Naval Research Logistics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/54/34/NAV-70-21.PMC10108525.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting older-donor kidneys' post-transplant renal function using pre-transplant data.\",\"authors\":\"Paola Martin, Diwakar Gupta, Timothy Pruett\",\"doi\":\"10.1002/nav.22083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper provides a methodology for predicting post-transplant kidney function, that is, the 1-year post-transplant estimated Glomerular Filtration Rate (eGFR-1) for each donor-candidate pair. We apply customized machine-learning algorithms to pre-transplant donor and recipient data to determine the probability of achieving an eGFR-1 of at least 30 ml/min. This threshold was chosen because there is insufficient survival benefit if the kidney fails to generate an eGFR-1 ≥ 30 ml/min. For some donor-candidate pairs, the developed algorithm provides highly accurate predictions. For others, limitations of previous transplants' data results in noisier predictions. However, because the same kidney is offered to many candidates, we identify those pairs for whom the predictions are highly accurate. Out of 6977 discarded older-donor kidneys that were a match with at least one transplanted kidney, 5282 had one or more identified candidate, who were offered that kidney, did not accept any other offer, and would have had ≥80% chance of achieving eGFR-1 ≥ 30 ml/min, had the kidney been transplanted. We also show that transplants with ≥80% chance of achieving eGFR-1 ≥ 30 ml/min and that survive 1 year have higher 10-year death-censored graft survival probabilities than all older-donor transplants that survive 1 year (73.61% vs. 70.48%, respectively).</p>\",\"PeriodicalId\":49772,\"journal\":{\"name\":\"Naval Research Logistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/54/34/NAV-70-21.PMC10108525.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naval Research Logistics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1002/nav.22083\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1002/nav.22083","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Predicting older-donor kidneys' post-transplant renal function using pre-transplant data.
This paper provides a methodology for predicting post-transplant kidney function, that is, the 1-year post-transplant estimated Glomerular Filtration Rate (eGFR-1) for each donor-candidate pair. We apply customized machine-learning algorithms to pre-transplant donor and recipient data to determine the probability of achieving an eGFR-1 of at least 30 ml/min. This threshold was chosen because there is insufficient survival benefit if the kidney fails to generate an eGFR-1 ≥ 30 ml/min. For some donor-candidate pairs, the developed algorithm provides highly accurate predictions. For others, limitations of previous transplants' data results in noisier predictions. However, because the same kidney is offered to many candidates, we identify those pairs for whom the predictions are highly accurate. Out of 6977 discarded older-donor kidneys that were a match with at least one transplanted kidney, 5282 had one or more identified candidate, who were offered that kidney, did not accept any other offer, and would have had ≥80% chance of achieving eGFR-1 ≥ 30 ml/min, had the kidney been transplanted. We also show that transplants with ≥80% chance of achieving eGFR-1 ≥ 30 ml/min and that survive 1 year have higher 10-year death-censored graft survival probabilities than all older-donor transplants that survive 1 year (73.61% vs. 70.48%, respectively).
期刊介绍:
Submissions that are most appropriate for NRL are papers addressing modeling and analysis of problems motivated by real-world applications; major methodological advances in operations research and applied statistics; and expository or survey pieces of lasting value. Areas represented include (but are not limited to) probability, statistics, simulation, optimization, game theory, quality, scheduling, reliability, maintenance, supply chain, decision analysis, and combat models. Special issues devoted to a single topic are published occasionally, and proposals for special issues are welcomed by the Editorial Board.