{"title":"少突胶质细胞祖细胞发育迁移的机制","authors":"Wenlong Xia, Stephen P. J. Fancy","doi":"10.1002/dneu.22856","DOIUrl":null,"url":null,"abstract":"<p>Oligodendrocytes, the myelinating cells of the central nervous system (CNS), develop from oligodendrocyte progenitor cells (OPCs) that must first migrate extensively throughout the developing brain and spinal cord. Specified at particular times from discrete regions in the developing CNS, OPCs are one of the most migratory of cell types and disperse rapidly. A variety of factors act on OPCs to trigger intracellular changes that regulate their migration. We will discuss factors that act as long-range guidance cues, those that act to regulate cellular motility, and those that are critical in determining the final positioning of OPCs. In addition, recent evidence has identified the vasculature as the physical substrate used by OPCs for their migration. Several new findings relating to this oligodendroglial–vascular signaling axis reveal new insight on the relationship between OPCs and blood vessels in the developing and adult brain.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"81 8","pages":"985-996"},"PeriodicalIF":2.7000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Mechanisms of oligodendrocyte progenitor developmental migration\",\"authors\":\"Wenlong Xia, Stephen P. J. Fancy\",\"doi\":\"10.1002/dneu.22856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oligodendrocytes, the myelinating cells of the central nervous system (CNS), develop from oligodendrocyte progenitor cells (OPCs) that must first migrate extensively throughout the developing brain and spinal cord. Specified at particular times from discrete regions in the developing CNS, OPCs are one of the most migratory of cell types and disperse rapidly. A variety of factors act on OPCs to trigger intracellular changes that regulate their migration. We will discuss factors that act as long-range guidance cues, those that act to regulate cellular motility, and those that are critical in determining the final positioning of OPCs. In addition, recent evidence has identified the vasculature as the physical substrate used by OPCs for their migration. Several new findings relating to this oligodendroglial–vascular signaling axis reveal new insight on the relationship between OPCs and blood vessels in the developing and adult brain.</p>\",\"PeriodicalId\":11300,\"journal\":{\"name\":\"Developmental Neurobiology\",\"volume\":\"81 8\",\"pages\":\"985-996\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22856\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.22856","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Mechanisms of oligodendrocyte progenitor developmental migration
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), develop from oligodendrocyte progenitor cells (OPCs) that must first migrate extensively throughout the developing brain and spinal cord. Specified at particular times from discrete regions in the developing CNS, OPCs are one of the most migratory of cell types and disperse rapidly. A variety of factors act on OPCs to trigger intracellular changes that regulate their migration. We will discuss factors that act as long-range guidance cues, those that act to regulate cellular motility, and those that are critical in determining the final positioning of OPCs. In addition, recent evidence has identified the vasculature as the physical substrate used by OPCs for their migration. Several new findings relating to this oligodendroglial–vascular signaling axis reveal new insight on the relationship between OPCs and blood vessels in the developing and adult brain.
期刊介绍:
Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.