{"title":"工程诱导神经干细胞联合gd2特异性CAR-NK治疗高级别胶质母细胞瘤的疗效","authors":"Weihua Liu, Yu Zhao, Zhongfeng Liu, Guangji Zhang, Huantong Wu, Xin Zheng, Xihe Tang, Zhiguo Chen","doi":"10.1007/s13402-023-00842-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>High-grade glioblastoma is extremely challenging to treat because of its aggressiveness and resistance to conventional chemo- and radio-therapies. On the contrary, genetic and cellular immunotherapeutic strategies based on the stem and immune cells are emerging as promising treatments against glioblastoma (GBM). We aimed to developed a novel combined immunotherapeutic strategy to improve the treatment efficacy using genetically engineered PBMC-derived induced neural stem cells (iNSCs) expressing HSV-TK and second-generation CAR-NK cells against GBM.</p><p><strong>Methods: </strong>iNSCs cells expressing HSV-TK (iNSCs<sup>TK</sup>) and GD2-specific CAR-NK92 (GD2NK92) were generated from PBMC-derived iNSCs and NK92 cell lines, respectively. The anti-tumor effect of iNSCs<sup>TK</sup> and the combinational therapeutics of iNSCs<sup>TK</sup> and GD2NK92 were evaluated by GBM cell line using in vitro and in vivo experiments.</p><p><strong>Results: </strong>PBMC-derived iNSCs<sup>TK</sup> possessed tumor-tropism migration ability in vitro and in vivo, which exhibited considerable anti-tumor activity via bystander effect in the presence of ganciclovir (GCV). iNSCs<sup>TK</sup>/GCV could slow GBM progression and prolong median survival in tumor-bearing mice. However, the anti-tumor effect was limited to single therapy. Therefore, the combinational therapeutic effect of iNSCs<sup>TK</sup>/GCV and GD2NK92 against GBM was investigated. This approach displayed a more significant anti-tumor effect in vitro and in xenograft tumor mice.</p><p><strong>Conclusions: </strong>PBMC-derived iNSCs<sup>TK</sup> showed a significant tumor-tropic migration and an effective anti-tumor activity with GCV in vitro and in vivo. In addition, combined with GD2NK92, iNSCs<sup>TK</sup> therapeutic efficacy improved dramatically to prolong the tumor-bearing animal model's median survival.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"1747-1762"},"PeriodicalIF":4.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic effects against high-grade glioblastoma mediated by engineered induced neural stem cells combined with GD2-specific CAR-NK.\",\"authors\":\"Weihua Liu, Yu Zhao, Zhongfeng Liu, Guangji Zhang, Huantong Wu, Xin Zheng, Xihe Tang, Zhiguo Chen\",\"doi\":\"10.1007/s13402-023-00842-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>High-grade glioblastoma is extremely challenging to treat because of its aggressiveness and resistance to conventional chemo- and radio-therapies. On the contrary, genetic and cellular immunotherapeutic strategies based on the stem and immune cells are emerging as promising treatments against glioblastoma (GBM). We aimed to developed a novel combined immunotherapeutic strategy to improve the treatment efficacy using genetically engineered PBMC-derived induced neural stem cells (iNSCs) expressing HSV-TK and second-generation CAR-NK cells against GBM.</p><p><strong>Methods: </strong>iNSCs cells expressing HSV-TK (iNSCs<sup>TK</sup>) and GD2-specific CAR-NK92 (GD2NK92) were generated from PBMC-derived iNSCs and NK92 cell lines, respectively. The anti-tumor effect of iNSCs<sup>TK</sup> and the combinational therapeutics of iNSCs<sup>TK</sup> and GD2NK92 were evaluated by GBM cell line using in vitro and in vivo experiments.</p><p><strong>Results: </strong>PBMC-derived iNSCs<sup>TK</sup> possessed tumor-tropism migration ability in vitro and in vivo, which exhibited considerable anti-tumor activity via bystander effect in the presence of ganciclovir (GCV). iNSCs<sup>TK</sup>/GCV could slow GBM progression and prolong median survival in tumor-bearing mice. However, the anti-tumor effect was limited to single therapy. Therefore, the combinational therapeutic effect of iNSCs<sup>TK</sup>/GCV and GD2NK92 against GBM was investigated. This approach displayed a more significant anti-tumor effect in vitro and in xenograft tumor mice.</p><p><strong>Conclusions: </strong>PBMC-derived iNSCs<sup>TK</sup> showed a significant tumor-tropic migration and an effective anti-tumor activity with GCV in vitro and in vivo. In addition, combined with GD2NK92, iNSCs<sup>TK</sup> therapeutic efficacy improved dramatically to prolong the tumor-bearing animal model's median survival.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"1747-1762\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-023-00842-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-023-00842-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Therapeutic effects against high-grade glioblastoma mediated by engineered induced neural stem cells combined with GD2-specific CAR-NK.
Purpose: High-grade glioblastoma is extremely challenging to treat because of its aggressiveness and resistance to conventional chemo- and radio-therapies. On the contrary, genetic and cellular immunotherapeutic strategies based on the stem and immune cells are emerging as promising treatments against glioblastoma (GBM). We aimed to developed a novel combined immunotherapeutic strategy to improve the treatment efficacy using genetically engineered PBMC-derived induced neural stem cells (iNSCs) expressing HSV-TK and second-generation CAR-NK cells against GBM.
Methods: iNSCs cells expressing HSV-TK (iNSCsTK) and GD2-specific CAR-NK92 (GD2NK92) were generated from PBMC-derived iNSCs and NK92 cell lines, respectively. The anti-tumor effect of iNSCsTK and the combinational therapeutics of iNSCsTK and GD2NK92 were evaluated by GBM cell line using in vitro and in vivo experiments.
Results: PBMC-derived iNSCsTK possessed tumor-tropism migration ability in vitro and in vivo, which exhibited considerable anti-tumor activity via bystander effect in the presence of ganciclovir (GCV). iNSCsTK/GCV could slow GBM progression and prolong median survival in tumor-bearing mice. However, the anti-tumor effect was limited to single therapy. Therefore, the combinational therapeutic effect of iNSCsTK/GCV and GD2NK92 against GBM was investigated. This approach displayed a more significant anti-tumor effect in vitro and in xenograft tumor mice.
Conclusions: PBMC-derived iNSCsTK showed a significant tumor-tropic migration and an effective anti-tumor activity with GCV in vitro and in vivo. In addition, combined with GD2NK92, iNSCsTK therapeutic efficacy improved dramatically to prolong the tumor-bearing animal model's median survival.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.