基于模型按需估计和离散同步摄动随机逼近的行为干预模型个性化。

Rachael T Kha, Daniel E Rivera, Predrag Klasnja, Eric Hekler
{"title":"基于模型按需估计和离散同步摄动随机逼近的行为干预模型个性化。","authors":"Rachael T Kha,&nbsp;Daniel E Rivera,&nbsp;Predrag Klasnja,&nbsp;Eric Hekler","doi":"10.23919/acc53348.2022.9867669","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the use of discrete Simultaneous Perturbation Stochastic Approximation (DSPSA) to optimize dynamical models meaningful for personalized interventions in behavioral medicine, with emphasis on physical activity. DSPSA is used to determine an optimal set of model features and parameter values which would otherwise be chosen either through exhaustive search or be specified <i>a priori</i>. The modeling technique examined in this study is Model-on-Demand (MoD) estimation, which synergistically manages local and global modeling, and represents an appealing alternative to traditional approaches such as ARX estimation. The combination of DSPSA and MoD in behavioral medicine can provide individualized models for participant-specific interventions. MoD estimation, enhanced with a DSPSA search, can be formulated to provide not only better explanatory information about a participant's physical behavior but also predictive power, providing greater insight into environmental and mental states that may be most conducive for participants to benefit from the actions of the intervention. A case study from data collected from a representative participant of the <i>Just Walk</i> intervention is presented in support of these conclusions.</p>","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":"2022 ","pages":"671-676"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634813/pdf/nihms-1816578.pdf","citationCount":"3","resultStr":"{\"title\":\"Model Personalization in Behavioral Interventions using Model-on-Demand Estimation and Discrete Simultaneous Perturbation Stochastic Approximation.\",\"authors\":\"Rachael T Kha,&nbsp;Daniel E Rivera,&nbsp;Predrag Klasnja,&nbsp;Eric Hekler\",\"doi\":\"10.23919/acc53348.2022.9867669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the use of discrete Simultaneous Perturbation Stochastic Approximation (DSPSA) to optimize dynamical models meaningful for personalized interventions in behavioral medicine, with emphasis on physical activity. DSPSA is used to determine an optimal set of model features and parameter values which would otherwise be chosen either through exhaustive search or be specified <i>a priori</i>. The modeling technique examined in this study is Model-on-Demand (MoD) estimation, which synergistically manages local and global modeling, and represents an appealing alternative to traditional approaches such as ARX estimation. The combination of DSPSA and MoD in behavioral medicine can provide individualized models for participant-specific interventions. MoD estimation, enhanced with a DSPSA search, can be formulated to provide not only better explanatory information about a participant's physical behavior but also predictive power, providing greater insight into environmental and mental states that may be most conducive for participants to benefit from the actions of the intervention. A case study from data collected from a representative participant of the <i>Just Walk</i> intervention is presented in support of these conclusions.</p>\",\"PeriodicalId\":74510,\"journal\":{\"name\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"volume\":\"2022 \",\"pages\":\"671-676\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9634813/pdf/nihms-1816578.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/acc53348.2022.9867669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc53348.2022.9867669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了使用离散同步摄动随机逼近(DSPSA)来优化行为医学中个性化干预的动力学模型,重点是身体活动。DSPSA用于确定一组最优的模型特征和参数值,否则这些特征和参数值将通过穷穷搜索或先验指定来选择。本研究中检验的建模技术是模型-按需(MoD)估计,它协同管理局部和全局建模,代表了传统方法(如ARX估计)的一种有吸引力的替代方法。DSPSA和MoD在行为医学中的结合可以为参与者的干预提供个性化的模型。通过DSPSA搜索增强的MoD估计不仅可以更好地解释参与者的身体行为,还可以提供预测能力,更深入地了解环境和精神状态,这可能是最有利于参与者从干预行动中受益的。本研究从“Just Walk”干预的一位有代表性的参与者那里收集了数据,并提出了一个案例研究来支持这些结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Personalization in Behavioral Interventions using Model-on-Demand Estimation and Discrete Simultaneous Perturbation Stochastic Approximation.

This paper presents the use of discrete Simultaneous Perturbation Stochastic Approximation (DSPSA) to optimize dynamical models meaningful for personalized interventions in behavioral medicine, with emphasis on physical activity. DSPSA is used to determine an optimal set of model features and parameter values which would otherwise be chosen either through exhaustive search or be specified a priori. The modeling technique examined in this study is Model-on-Demand (MoD) estimation, which synergistically manages local and global modeling, and represents an appealing alternative to traditional approaches such as ARX estimation. The combination of DSPSA and MoD in behavioral medicine can provide individualized models for participant-specific interventions. MoD estimation, enhanced with a DSPSA search, can be formulated to provide not only better explanatory information about a participant's physical behavior but also predictive power, providing greater insight into environmental and mental states that may be most conducive for participants to benefit from the actions of the intervention. A case study from data collected from a representative participant of the Just Walk intervention is presented in support of these conclusions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Closed-Loop Multimodal Neuromodulation of Vagus Nerve for Control of Heart Rate. Idiographic Dynamic Modeling for Behavioral Interventions with Mixed Data Partitioning and Discrete Simultaneous Perturbation Stochastic Approximation. System Identification and Hybrid Model Predictive Control in Personalized mHealth Interventions for Physical Activity. Reinforcement Learning Data-Acquiring for Causal Inference of Regulatory Networks. Integral Quadratic Constraints with Infinite-Dimensional Channels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1