ASIC2021报告:细胞外囊泡通讯机制会议

Ashley E Russell, Susmita Sil, Shilpa Buch, Michael W Graner
{"title":"ASIC2021报告:细胞外囊泡通讯机制会议","authors":"Ashley E Russell, Susmita Sil, Shilpa Buch, Michael W Graner","doi":"10.20517/evcna.2022.31","DOIUrl":null,"url":null,"abstract":"AD. His group generated human induced pluripotent stem cells (hiPSCs) and differentiated them into neuronal, astrocytic, oligodendrocytic, and microglial cell types. Proteomic profiles of EVs from these differentiated iPSC cells contained cell-type specific markers: excitatory neurons (ATP1A3, NCAM1); astrocytes (LRP1, ITGA6); microglia-like cells (ITGAM, CD300A); and oligodendrocyte-like cells (LAMP2, FTH1). There were also 16 pan-EV marker candidates, including integrins and annexins. Cell type-specific EV proteins could also be found when comparing their data to CSF EV proteomic datasets, which also held true for brain-derived EVs. Correlation networks and pathway analyses identified proteins in each cell subset EVs with co-expression in AD. It was shown that astrocyte-specific EV (ADEV) markers were most significantly associated with AD pathology and cognitive impairment, thereby underscoring the role of ADEVs in AD progression. The hub protein from this module, integrin- β 1 (ITGB1), was elevated in ADEVs purified from total brain-derived EVs and associated with brain A β 42 and tau load in independent cohorts. From this, it was found that astrocytes are likely in an activated state due to IL1B, and astrocytic AD EVs are enriched in ITGB1. This correlated with A β 42 and phosphoTau, and these EVs enhance neuronal uptake via integrin signaling. Thus, this study provides a featured framework and rich resource for analyses of EV functions in neurodegenerative diseases in a cell type-specific manner.","PeriodicalId":73008,"journal":{"name":"Extracellular vesicles and circulating nucleic acids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147373/pdf/","citationCount":"0","resultStr":"{\"title\":\"A report on ASIC2021: a conference on extracellular vesicle communication mechanisms.\",\"authors\":\"Ashley E Russell, Susmita Sil, Shilpa Buch, Michael W Graner\",\"doi\":\"10.20517/evcna.2022.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AD. His group generated human induced pluripotent stem cells (hiPSCs) and differentiated them into neuronal, astrocytic, oligodendrocytic, and microglial cell types. Proteomic profiles of EVs from these differentiated iPSC cells contained cell-type specific markers: excitatory neurons (ATP1A3, NCAM1); astrocytes (LRP1, ITGA6); microglia-like cells (ITGAM, CD300A); and oligodendrocyte-like cells (LAMP2, FTH1). There were also 16 pan-EV marker candidates, including integrins and annexins. Cell type-specific EV proteins could also be found when comparing their data to CSF EV proteomic datasets, which also held true for brain-derived EVs. Correlation networks and pathway analyses identified proteins in each cell subset EVs with co-expression in AD. It was shown that astrocyte-specific EV (ADEV) markers were most significantly associated with AD pathology and cognitive impairment, thereby underscoring the role of ADEVs in AD progression. The hub protein from this module, integrin- β 1 (ITGB1), was elevated in ADEVs purified from total brain-derived EVs and associated with brain A β 42 and tau load in independent cohorts. From this, it was found that astrocytes are likely in an activated state due to IL1B, and astrocytic AD EVs are enriched in ITGB1. This correlated with A β 42 and phosphoTau, and these EVs enhance neuronal uptake via integrin signaling. Thus, this study provides a featured framework and rich resource for analyses of EV functions in neurodegenerative diseases in a cell type-specific manner.\",\"PeriodicalId\":73008,\"journal\":{\"name\":\"Extracellular vesicles and circulating nucleic acids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extracellular vesicles and circulating nucleic acids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/evcna.2022.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracellular vesicles and circulating nucleic acids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/evcna.2022.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A report on ASIC2021: a conference on extracellular vesicle communication mechanisms.
AD. His group generated human induced pluripotent stem cells (hiPSCs) and differentiated them into neuronal, astrocytic, oligodendrocytic, and microglial cell types. Proteomic profiles of EVs from these differentiated iPSC cells contained cell-type specific markers: excitatory neurons (ATP1A3, NCAM1); astrocytes (LRP1, ITGA6); microglia-like cells (ITGAM, CD300A); and oligodendrocyte-like cells (LAMP2, FTH1). There were also 16 pan-EV marker candidates, including integrins and annexins. Cell type-specific EV proteins could also be found when comparing their data to CSF EV proteomic datasets, which also held true for brain-derived EVs. Correlation networks and pathway analyses identified proteins in each cell subset EVs with co-expression in AD. It was shown that astrocyte-specific EV (ADEV) markers were most significantly associated with AD pathology and cognitive impairment, thereby underscoring the role of ADEVs in AD progression. The hub protein from this module, integrin- β 1 (ITGB1), was elevated in ADEVs purified from total brain-derived EVs and associated with brain A β 42 and tau load in independent cohorts. From this, it was found that astrocytes are likely in an activated state due to IL1B, and astrocytic AD EVs are enriched in ITGB1. This correlated with A β 42 and phosphoTau, and these EVs enhance neuronal uptake via integrin signaling. Thus, this study provides a featured framework and rich resource for analyses of EV functions in neurodegenerative diseases in a cell type-specific manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia Harnessing crosstalk between extracellular vesicles and viruses for disease diagnostics and therapeutics Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design Synovial fluid extracellular vesicles as arthritis biomarkers: the added value of lipid-profiling and integrated omics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1