EEPD1促进氧化应激复制叉的修复。

NAR Cancer Pub Date : 2023-01-18 eCollection Date: 2023-03-01 DOI:10.1093/narcan/zcac044
Aruna S Jaiswal, Hyun-Suk Kim, Orlando D Schärer, Neelam Sharma, Elizabeth A Williamson, Gayathri Srinivasan, Linda Phillips, Kimi Kong, Shailee Arya, Anurag Misra, Arijit Dutta, Yogesh Gupta, Christi A Walter, Sandeep Burma, Satya Narayan, Patrick Sung, Jac A Nickoloff, Robert Hromas
{"title":"EEPD1促进氧化应激复制叉的修复。","authors":"Aruna S Jaiswal, Hyun-Suk Kim, Orlando D Schärer, Neelam Sharma, Elizabeth A Williamson, Gayathri Srinivasan, Linda Phillips, Kimi Kong, Shailee Arya, Anurag Misra, Arijit Dutta, Yogesh Gupta, Christi A Walter, Sandeep Burma, Satya Narayan, Patrick Sung, Jac A Nickoloff, Robert Hromas","doi":"10.1093/narcan/zcac044","DOIUrl":null,"url":null,"abstract":"<p><p>Unrepaired oxidatively-stressed replication forks can lead to chromosomal instability and neoplastic transformation or cell death. To meet these challenges cells have evolved a robust mechanism to repair oxidative genomic DNA damage through the base excision repair (BER) pathway, but less is known about repair of oxidative damage at replication forks. We found that depletion or genetic deletion of EEPD1 decreases clonogenic cell survival after oxidative DNA damage. We demonstrate that EEPD1 is recruited to replication forks stressed by oxidative damage induced by H<sub>2</sub>O<sub>2</sub> and that EEPD1 promotes replication fork repair and restart and decreases chromosomal abnormalities after such damage. EEPD1 binds to abasic DNA structures and promotes resolution of genomic abasic sites after oxidative stress. We further observed that restoration of expression of EEPD1 via expression vector transfection restores cell survival and suppresses chromosomal abnormalities induced by oxidative stress in EEPD1-depleted cells. Consistent with this, we found that EEPD1 preserves replication fork integrity by preventing oxidatively-stressed unrepaired fork fusion, thereby decreasing chromosome instability and mitotic abnormalities. Our results indicate a novel role for EEPD1 in replication fork preservation and maintenance of chromosomal stability during oxidative stress.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846428/pdf/","citationCount":"0","resultStr":"{\"title\":\"EEPD1 promotes repair of oxidatively-stressed replication forks.\",\"authors\":\"Aruna S Jaiswal, Hyun-Suk Kim, Orlando D Schärer, Neelam Sharma, Elizabeth A Williamson, Gayathri Srinivasan, Linda Phillips, Kimi Kong, Shailee Arya, Anurag Misra, Arijit Dutta, Yogesh Gupta, Christi A Walter, Sandeep Burma, Satya Narayan, Patrick Sung, Jac A Nickoloff, Robert Hromas\",\"doi\":\"10.1093/narcan/zcac044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unrepaired oxidatively-stressed replication forks can lead to chromosomal instability and neoplastic transformation or cell death. To meet these challenges cells have evolved a robust mechanism to repair oxidative genomic DNA damage through the base excision repair (BER) pathway, but less is known about repair of oxidative damage at replication forks. We found that depletion or genetic deletion of EEPD1 decreases clonogenic cell survival after oxidative DNA damage. We demonstrate that EEPD1 is recruited to replication forks stressed by oxidative damage induced by H<sub>2</sub>O<sub>2</sub> and that EEPD1 promotes replication fork repair and restart and decreases chromosomal abnormalities after such damage. EEPD1 binds to abasic DNA structures and promotes resolution of genomic abasic sites after oxidative stress. We further observed that restoration of expression of EEPD1 via expression vector transfection restores cell survival and suppresses chromosomal abnormalities induced by oxidative stress in EEPD1-depleted cells. Consistent with this, we found that EEPD1 preserves replication fork integrity by preventing oxidatively-stressed unrepaired fork fusion, thereby decreasing chromosome instability and mitotic abnormalities. Our results indicate a novel role for EEPD1 in replication fork preservation and maintenance of chromosomal stability during oxidative stress.</p>\",\"PeriodicalId\":18879,\"journal\":{\"name\":\"NAR Cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/narcan/zcac044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcac044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

未配对的氧化应激复制叉可导致染色体不稳定和肿瘤转化或细胞死亡。为了应对这些挑战,细胞已经进化出一种强大的机制,通过碱基切除修复(BER)途径修复基因组DNA的氧化损伤,但对复制叉处氧化损伤的修复知之甚少。我们发现,EEPD1的缺失或基因缺失会降低DNA氧化损伤后的克隆细胞存活率。我们证明,EEPD1被招募到由H2O2诱导的氧化损伤所应激的复制叉中,并且EEPD1促进复制叉的修复和重启,并减少这种损伤后的染色体异常。EEPD1与碱性DNA结构结合,并促进氧化应激后基因组碱性位点的分解。我们进一步观察到,在EEPD1缺失的细胞中,通过表达载体转染恢复EEPD1的表达可恢复细胞存活并抑制氧化应激诱导的染色体异常。与此一致,我们发现EEPD1通过防止氧化应激的未修复叉融合来保持复制叉的完整性,从而减少染色体不稳定性和有丝分裂异常。我们的研究结果表明,在氧化应激期间,EEPD1在复制叉保存和维持染色体稳定性方面具有新的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EEPD1 promotes repair of oxidatively-stressed replication forks.

Unrepaired oxidatively-stressed replication forks can lead to chromosomal instability and neoplastic transformation or cell death. To meet these challenges cells have evolved a robust mechanism to repair oxidative genomic DNA damage through the base excision repair (BER) pathway, but less is known about repair of oxidative damage at replication forks. We found that depletion or genetic deletion of EEPD1 decreases clonogenic cell survival after oxidative DNA damage. We demonstrate that EEPD1 is recruited to replication forks stressed by oxidative damage induced by H2O2 and that EEPD1 promotes replication fork repair and restart and decreases chromosomal abnormalities after such damage. EEPD1 binds to abasic DNA structures and promotes resolution of genomic abasic sites after oxidative stress. We further observed that restoration of expression of EEPD1 via expression vector transfection restores cell survival and suppresses chromosomal abnormalities induced by oxidative stress in EEPD1-depleted cells. Consistent with this, we found that EEPD1 preserves replication fork integrity by preventing oxidatively-stressed unrepaired fork fusion, thereby decreasing chromosome instability and mitotic abnormalities. Our results indicate a novel role for EEPD1 in replication fork preservation and maintenance of chromosomal stability during oxidative stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pan-cancer analysis of promoter activity quantitative trait loci Large-scale phenogenomic analysis of human cancers uncovers frequent alterations affecting SMC5/6 complex components in breast cancer. Inhibition of nonsense-mediated mRNA decay reduces the tumorigenicity of human fibrosarcoma cells. CDK2 regulates collapsed replication fork repair in CCNE1-amplified ovarian cancer cells via homologous recombination. Editorial: DNA repair and nucleic acid therapeutics in cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1