Dongdong Zhang, Yixin Sun, Min Lei, Yue Wang, Chengfu Cai
{"title":"基于RNA-seq和分子生物学实验解读RG108在顺铂诱导HEI-OC1耳毒性中的潜在能力","authors":"Dongdong Zhang, Yixin Sun, Min Lei, Yue Wang, Chengfu Cai","doi":"10.1186/s41065-023-00283-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Drug-induced hearing loss (DIHL) is very common, and seriously affects people's happiness in life. RG108 is a small molecule inhibitor. RG108 is protective against DIHL. Our purpose is to probe the incidence of RG108 on cisplatin-induced ototoxicity.</p><p><strong>Materials and methods: </strong>In our research, the ototoxicity of RG108 was investigated in HEI-OC1. We observed under the microscope whether RG108 had an effect on cisplatin-induced cochlear hair cells. RNA-seq experiments were further performed to explore possible gene ontology (GO) and pathways. ROS assay was applied to supervisory the effect of RG108 on oxidative harm of auditory cells. In auditory cells, RG108 was tested for its effects on apoptosis-related proteins by Western blotting (WB).</p><p><strong>Results: </strong>GO analysis showed that RG108 associated with apoptosis. KEGG analysis shows RG108 may act on PI3K-AKT signaling pathway (PASP) in hearing loss. BIOCARTA analysis showed that RG108 may affect oxidative stress by activating NRF2 pathway. ROS ascerted that RG108 could rescue oxidative harm in HEI-OC1. RG108 rescued cisplatin-induced significant increase in Bax and significant decrease in BCL2. RG108 attenuates cisplatin-induced cochlear apoptosis through upregulated phosphorylated PI3K and phosphorylated AKT and down-regulated caspase3. MTT experiments showed that both PI3K and AKT inhibitors could significantly rescue the damage caused by cisplatin to HEI-OC1. RG108 significantly increases the level of NRF2/HO-1/NQO1 in cisplatin-induced cells.</p><p><strong>Conclusion: </strong>Overall, these results provide evidence that NRF2/PI3K-AKT axis may mediate RG108 in the treatment of DIHL, which provide a broader outlook on drug-induced deafness treatment.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"160 1","pages":"18"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124021/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deciphering the potential ability of RG108 in cisplatin-induced HEI-OC1 ototoxicity: a research based on RNA-seq and molecular biology experiment.\",\"authors\":\"Dongdong Zhang, Yixin Sun, Min Lei, Yue Wang, Chengfu Cai\",\"doi\":\"10.1186/s41065-023-00283-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Drug-induced hearing loss (DIHL) is very common, and seriously affects people's happiness in life. RG108 is a small molecule inhibitor. RG108 is protective against DIHL. Our purpose is to probe the incidence of RG108 on cisplatin-induced ototoxicity.</p><p><strong>Materials and methods: </strong>In our research, the ototoxicity of RG108 was investigated in HEI-OC1. We observed under the microscope whether RG108 had an effect on cisplatin-induced cochlear hair cells. RNA-seq experiments were further performed to explore possible gene ontology (GO) and pathways. ROS assay was applied to supervisory the effect of RG108 on oxidative harm of auditory cells. In auditory cells, RG108 was tested for its effects on apoptosis-related proteins by Western blotting (WB).</p><p><strong>Results: </strong>GO analysis showed that RG108 associated with apoptosis. KEGG analysis shows RG108 may act on PI3K-AKT signaling pathway (PASP) in hearing loss. BIOCARTA analysis showed that RG108 may affect oxidative stress by activating NRF2 pathway. ROS ascerted that RG108 could rescue oxidative harm in HEI-OC1. RG108 rescued cisplatin-induced significant increase in Bax and significant decrease in BCL2. RG108 attenuates cisplatin-induced cochlear apoptosis through upregulated phosphorylated PI3K and phosphorylated AKT and down-regulated caspase3. MTT experiments showed that both PI3K and AKT inhibitors could significantly rescue the damage caused by cisplatin to HEI-OC1. RG108 significantly increases the level of NRF2/HO-1/NQO1 in cisplatin-induced cells.</p><p><strong>Conclusion: </strong>Overall, these results provide evidence that NRF2/PI3K-AKT axis may mediate RG108 in the treatment of DIHL, which provide a broader outlook on drug-induced deafness treatment.</p>\",\"PeriodicalId\":12862,\"journal\":{\"name\":\"Hereditas\",\"volume\":\"160 1\",\"pages\":\"18\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124021/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hereditas\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s41065-023-00283-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-023-00283-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deciphering the potential ability of RG108 in cisplatin-induced HEI-OC1 ototoxicity: a research based on RNA-seq and molecular biology experiment.
Background: Drug-induced hearing loss (DIHL) is very common, and seriously affects people's happiness in life. RG108 is a small molecule inhibitor. RG108 is protective against DIHL. Our purpose is to probe the incidence of RG108 on cisplatin-induced ototoxicity.
Materials and methods: In our research, the ototoxicity of RG108 was investigated in HEI-OC1. We observed under the microscope whether RG108 had an effect on cisplatin-induced cochlear hair cells. RNA-seq experiments were further performed to explore possible gene ontology (GO) and pathways. ROS assay was applied to supervisory the effect of RG108 on oxidative harm of auditory cells. In auditory cells, RG108 was tested for its effects on apoptosis-related proteins by Western blotting (WB).
Results: GO analysis showed that RG108 associated with apoptosis. KEGG analysis shows RG108 may act on PI3K-AKT signaling pathway (PASP) in hearing loss. BIOCARTA analysis showed that RG108 may affect oxidative stress by activating NRF2 pathway. ROS ascerted that RG108 could rescue oxidative harm in HEI-OC1. RG108 rescued cisplatin-induced significant increase in Bax and significant decrease in BCL2. RG108 attenuates cisplatin-induced cochlear apoptosis through upregulated phosphorylated PI3K and phosphorylated AKT and down-regulated caspase3. MTT experiments showed that both PI3K and AKT inhibitors could significantly rescue the damage caused by cisplatin to HEI-OC1. RG108 significantly increases the level of NRF2/HO-1/NQO1 in cisplatin-induced cells.
Conclusion: Overall, these results provide evidence that NRF2/PI3K-AKT axis may mediate RG108 in the treatment of DIHL, which provide a broader outlook on drug-induced deafness treatment.
HereditasBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍:
For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.