基因修饰间充质间质细胞在软骨再生中的应用。

IF 2.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Stem cells and development Pub Date : 2023-07-01 DOI:10.1089/scd.2022.0242
Yujun Sun, Chunyu Xue, Haoyu Wu, Changchuan Li, Shixun Li, Jiankai Luo, Taihe Liu, Yue Ding
{"title":"基因修饰间充质间质细胞在软骨再生中的应用。","authors":"Yujun Sun,&nbsp;Chunyu Xue,&nbsp;Haoyu Wu,&nbsp;Changchuan Li,&nbsp;Shixun Li,&nbsp;Jiankai Luo,&nbsp;Taihe Liu,&nbsp;Yue Ding","doi":"10.1089/scd.2022.0242","DOIUrl":null,"url":null,"abstract":"<p><p>Articular cartilage injury is common in various conditions, including osteoarthritis, rheumatic diseases, and trauma. Current treatments for cartilage injury fail to completely regenerate the damaged cartilage. Mesenchymal stromal cells (MSCs) have emerged as potential candidates for cartilage regeneration. However, MSCs exhibit hypertrophic differentiation, and their chondrogenic ability is reduced in an inflammatory environment. In recent years, genetic modification has been proposed for optimizing MSC-based therapies, some of which are expected to enter clinical trials. This review summarizes recent research findings and developments in genetic engineering strategies to enhance stem cell-based therapy for cartilage regeneration. We also discuss the mechanisms of biofunctions of MSCs in cartilage regeneration and outline the efficacy and safety of the different genetic modification strategies, including viral and nonviral delivery transduction. Finally, we highlight the major challenges and prospects for clinical translation of genetically modified MSCs.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genetically Modified Mesenchymal Stromal Cells in Cartilage Regeneration.\",\"authors\":\"Yujun Sun,&nbsp;Chunyu Xue,&nbsp;Haoyu Wu,&nbsp;Changchuan Li,&nbsp;Shixun Li,&nbsp;Jiankai Luo,&nbsp;Taihe Liu,&nbsp;Yue Ding\",\"doi\":\"10.1089/scd.2022.0242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Articular cartilage injury is common in various conditions, including osteoarthritis, rheumatic diseases, and trauma. Current treatments for cartilage injury fail to completely regenerate the damaged cartilage. Mesenchymal stromal cells (MSCs) have emerged as potential candidates for cartilage regeneration. However, MSCs exhibit hypertrophic differentiation, and their chondrogenic ability is reduced in an inflammatory environment. In recent years, genetic modification has been proposed for optimizing MSC-based therapies, some of which are expected to enter clinical trials. This review summarizes recent research findings and developments in genetic engineering strategies to enhance stem cell-based therapy for cartilage regeneration. We also discuss the mechanisms of biofunctions of MSCs in cartilage regeneration and outline the efficacy and safety of the different genetic modification strategies, including viral and nonviral delivery transduction. Finally, we highlight the major challenges and prospects for clinical translation of genetically modified MSCs.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2022.0242\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2022.0242","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

关节软骨损伤在各种情况下都很常见,包括骨关节炎、风湿性疾病和创伤。目前对软骨损伤的治疗不能使受损的软骨完全再生。间充质间质细胞(MSCs)已成为软骨再生的潜在候选细胞。然而,间充质干细胞表现出肥厚分化,它们的软骨形成能力在炎症环境中降低。近年来,基因改造已被提出用于优化基于msc的治疗方法,其中一些有望进入临床试验。本文综述了近年来基因工程技术在增强软骨干细胞再生治疗方面的研究成果和进展。我们还讨论了MSCs在软骨再生中的生物功能机制,并概述了不同基因修饰策略的有效性和安全性,包括病毒和非病毒传递转导。最后,我们强调了转基因间充质干细胞临床翻译的主要挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetically Modified Mesenchymal Stromal Cells in Cartilage Regeneration.

Articular cartilage injury is common in various conditions, including osteoarthritis, rheumatic diseases, and trauma. Current treatments for cartilage injury fail to completely regenerate the damaged cartilage. Mesenchymal stromal cells (MSCs) have emerged as potential candidates for cartilage regeneration. However, MSCs exhibit hypertrophic differentiation, and their chondrogenic ability is reduced in an inflammatory environment. In recent years, genetic modification has been proposed for optimizing MSC-based therapies, some of which are expected to enter clinical trials. This review summarizes recent research findings and developments in genetic engineering strategies to enhance stem cell-based therapy for cartilage regeneration. We also discuss the mechanisms of biofunctions of MSCs in cartilage regeneration and outline the efficacy and safety of the different genetic modification strategies, including viral and nonviral delivery transduction. Finally, we highlight the major challenges and prospects for clinical translation of genetically modified MSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem cells and development
Stem cells and development 医学-细胞与组织工程
CiteScore
7.80
自引率
2.50%
发文量
69
审稿时长
3 months
期刊介绍: Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings. Stem Cells and Development coverage includes: Embryogenesis and adult counterparts of this process Physical processes linking stem cells, primary cell function, and structural development Hypotheses exploring the relationship between genotype and phenotype Development of vasculature, CNS, and other germ layer development and defects Pluripotentiality of embryonic and somatic stem cells The role of genetic and epigenetic factors in development
期刊最新文献
Human Adipose-derived Mesenchymal Stem Cells Colonize and Promote Healing of Leprosy Ulcer by Inducing Neuro-vascularization. FoxO3 regulates mouse bone mesenchymal stem cell fate and bone-fat balance during skeletal aging. Correction to: The Essence of Quiescence, by Peter Quesenberry et al., Stem Cells Dev 2024;33(7-8):149-152; doi: 10.1089/scd.2024.0032. Key Roles of Gli1 and Ihh Signaling in Craniofacial Development. Low initial cell density promotes the differentiation and maturation of human pluripotent stem cells into erythrocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1