{"title":"基于元数据的医疗保健时间序列(BAHT)决策支持系统中的偏差分析。","authors":"Sagnik Dakshit, Sristi Dakshit, Ninad Khargonkar, Balakrishnan Prabhakaran","doi":"10.1007/s41666-023-00133-6","DOIUrl":null,"url":null,"abstract":"<p><p>One of the hindrances in the widespread acceptance of deep learning-based decision support systems in healthcare is bias. Bias in its many forms occurs in the datasets used to train and test deep learning models and is amplified when deployed in the real world, leading to challenges such as model drift. Recent advancements in the field of deep learning have led to the deployment of deployable automated healthcare diagnosis decision support systems at hospitals as well as tele-medicine through IoT devices. Research has been focused primarily on the development and improvement of these systems leaving a gap in the analysis of the fairness. The domain of FAccT ML (fairness, accountability, and transparency) accounts for the analysis of these deployable machine learning systems. In this work, we present a framework for bias analysis in healthcare time series (BAHT) signals such as electrocardiogram (ECG) and electroencephalogram (EEG). BAHT provides a graphical interpretive analysis of bias in the training, testing datasets in terms of protected variables, and analysis of bias amplification by the trained supervised learning model for time series healthcare decision support systems. We thoroughly investigate three prominent time series ECG and EEG healthcare datasets used for model training and research. We show the extensive presence of bias in the datasets leads to potentially biased or unfair machine-learning models. Our experiments also demonstrate the amplification of identified bias with an observed maximum of 66.66%. We investigate the effect of model drift due to unanalyzed bias in datasets and algorithms. Bias mitigation though prudent is a nascent area of research. We present experiments and analyze the most prevalently accepted bias mitigation strategies of under-sampling, oversampling, and the use of synthetic data for balancing the dataset through augmentation. It is important that healthcare models, datasets, and bias mitigation strategies should be properly analyzed for a fair unbiased delivery of service.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290973/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bias Analysis in Healthcare Time Series (BAHT) Decision Support Systems from Meta Data.\",\"authors\":\"Sagnik Dakshit, Sristi Dakshit, Ninad Khargonkar, Balakrishnan Prabhakaran\",\"doi\":\"10.1007/s41666-023-00133-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the hindrances in the widespread acceptance of deep learning-based decision support systems in healthcare is bias. Bias in its many forms occurs in the datasets used to train and test deep learning models and is amplified when deployed in the real world, leading to challenges such as model drift. Recent advancements in the field of deep learning have led to the deployment of deployable automated healthcare diagnosis decision support systems at hospitals as well as tele-medicine through IoT devices. Research has been focused primarily on the development and improvement of these systems leaving a gap in the analysis of the fairness. The domain of FAccT ML (fairness, accountability, and transparency) accounts for the analysis of these deployable machine learning systems. In this work, we present a framework for bias analysis in healthcare time series (BAHT) signals such as electrocardiogram (ECG) and electroencephalogram (EEG). BAHT provides a graphical interpretive analysis of bias in the training, testing datasets in terms of protected variables, and analysis of bias amplification by the trained supervised learning model for time series healthcare decision support systems. We thoroughly investigate three prominent time series ECG and EEG healthcare datasets used for model training and research. We show the extensive presence of bias in the datasets leads to potentially biased or unfair machine-learning models. Our experiments also demonstrate the amplification of identified bias with an observed maximum of 66.66%. We investigate the effect of model drift due to unanalyzed bias in datasets and algorithms. Bias mitigation though prudent is a nascent area of research. We present experiments and analyze the most prevalently accepted bias mitigation strategies of under-sampling, oversampling, and the use of synthetic data for balancing the dataset through augmentation. It is important that healthcare models, datasets, and bias mitigation strategies should be properly analyzed for a fair unbiased delivery of service.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10290973/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-023-00133-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-023-00133-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Bias Analysis in Healthcare Time Series (BAHT) Decision Support Systems from Meta Data.
One of the hindrances in the widespread acceptance of deep learning-based decision support systems in healthcare is bias. Bias in its many forms occurs in the datasets used to train and test deep learning models and is amplified when deployed in the real world, leading to challenges such as model drift. Recent advancements in the field of deep learning have led to the deployment of deployable automated healthcare diagnosis decision support systems at hospitals as well as tele-medicine through IoT devices. Research has been focused primarily on the development and improvement of these systems leaving a gap in the analysis of the fairness. The domain of FAccT ML (fairness, accountability, and transparency) accounts for the analysis of these deployable machine learning systems. In this work, we present a framework for bias analysis in healthcare time series (BAHT) signals such as electrocardiogram (ECG) and electroencephalogram (EEG). BAHT provides a graphical interpretive analysis of bias in the training, testing datasets in terms of protected variables, and analysis of bias amplification by the trained supervised learning model for time series healthcare decision support systems. We thoroughly investigate three prominent time series ECG and EEG healthcare datasets used for model training and research. We show the extensive presence of bias in the datasets leads to potentially biased or unfair machine-learning models. Our experiments also demonstrate the amplification of identified bias with an observed maximum of 66.66%. We investigate the effect of model drift due to unanalyzed bias in datasets and algorithms. Bias mitigation though prudent is a nascent area of research. We present experiments and analyze the most prevalently accepted bias mitigation strategies of under-sampling, oversampling, and the use of synthetic data for balancing the dataset through augmentation. It is important that healthcare models, datasets, and bias mitigation strategies should be properly analyzed for a fair unbiased delivery of service.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis