现代昼夜生物学家的现代语言:“奴隶”振荡器的终结。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-08-01 DOI:10.1177/07487304231152982
Casey-Tyler Berezin
{"title":"现代昼夜生物学家的现代语言:“奴隶”振荡器的终结。","authors":"Casey-Tyler Berezin","doi":"10.1177/07487304231152982","DOIUrl":null,"url":null,"abstract":"323 As I sat at the computer in my living room, I was not entirely shocked at the words on the slide before me. In the spring of 2021, I was in a graduate-level course on neuronal circuits and behavior; I usually attended the virtual class from home before heading into the lab to continue my research on the role of intrinsically photosensitive retinal ganglion cells on circadian behavior. Naturally, I was thrilled to get to the circadian biology lectures. That day, we discussed the role of the “master” clock in regulating “slave” oscillators throughout the body. As circadian biologists, it’s not unusual to encounter these terms, but that doesn’t mean we should continue using them.1 In his early work, Colin S. Pittendrigh, often dubbed the founder of circadian biology, discussed the light-sensitive A-oscillator and autonomous B-oscillator (Pittendrigh et al., 1958). His co-author on this 1958 paper, Peter Kaus, was a physicist credited with providing mathematical expertise for Pittendrigh’s work. The emergence of the circadian “slave oscillator” appears to originate with Kaus in 1976 (Kaus, 1976), and was likely born from the electronics field where the term had been used since at least the 1940s (Alsberg and Leed, 1949). Master-slave terminology likely caught on because it was an “easy” metaphor, and at the time, “there were few Black engineers to object,” says ethno-mathematician Ron Eglash (All Together, Society of Women Engineers, 2020). Over the past 50 years, generations of circadian biologists have been taught these terms, and their use should not be a source of individual blame. However, we scientists have a duty to overcome the role science has played in the United States’s continued history of racism2 (Nobles et al., 2022). We are trained in the importance of precise language and leaving a rigorous path to follow. With a new generation of scientists comes new expectations for the way we communicate and conduct ourselves. Eliminating the “slave” oscillator won’t undo years of scientific racism, but perhaps it can be one less reason a prospective student might not come our way. It’s encouraging that it’s already more common to see the phrase “peripheral” oscillator than “slave” oscillator in research articles (Figure 1). Yet it would be remiss to attribute the growth in “peripheral” oscillators simply to changes in societal thinking. Rather, scientific advancements in the 1990s elucidated the autonomous nature of circadian oscillators proposed decades before (Pittendrigh et al., 1958). Isolated neurons were shown to retain circadian rhythms in culture (Michel et al., 1993; Welsh et al., 1995), and circadian oscillations (e.g., rhythmic clock gene expression) were found widespread throughout the periphery (Balsalobre et al., 1998; Plautz et al., 1997; Zylka et al., 1998). As such, a modern hierarchical view of circadian rhythms features a coordinating “pacemaker” rather than a vague, all-powerful “master,” and rightfully recognizes “slave” oscillators as autonomous “peripheral” oscillators.3 Nevertheless, more than a dozen articles using the outdated language are still published every year, and prospective circadian biology students continue to sit in lecture halls where the term is used. Given the prolific nature of these concepts, students may need to learn that peripheral oscillators used to be called “slave” oscillators, so they can comprehend older publications; however, we must encourage alternate terminologies be used (e.g., central/peripheral, primary/secondary, leader/follower), as these are not only less problematic, but more accurate. Altering the many articles and books already published using master-slave terminology would be a daunting, though not impossible, feat (All Together, Society of Women Engineers, 2020). More critical is that those in positions of authority modernize our field moving forward. Calls for more 1152982JBRXXX10.1177/07487304231152982JOURNAL OF BIOLOGICAL RHYTHMSBerezin / END OF THE SLAVE OSCILLATOR editorial2023","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modern Language for Modern Circadian Biologists: The End of the \\\"Slave\\\" Oscillator.\",\"authors\":\"Casey-Tyler Berezin\",\"doi\":\"10.1177/07487304231152982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"323 As I sat at the computer in my living room, I was not entirely shocked at the words on the slide before me. In the spring of 2021, I was in a graduate-level course on neuronal circuits and behavior; I usually attended the virtual class from home before heading into the lab to continue my research on the role of intrinsically photosensitive retinal ganglion cells on circadian behavior. Naturally, I was thrilled to get to the circadian biology lectures. That day, we discussed the role of the “master” clock in regulating “slave” oscillators throughout the body. As circadian biologists, it’s not unusual to encounter these terms, but that doesn’t mean we should continue using them.1 In his early work, Colin S. Pittendrigh, often dubbed the founder of circadian biology, discussed the light-sensitive A-oscillator and autonomous B-oscillator (Pittendrigh et al., 1958). His co-author on this 1958 paper, Peter Kaus, was a physicist credited with providing mathematical expertise for Pittendrigh’s work. The emergence of the circadian “slave oscillator” appears to originate with Kaus in 1976 (Kaus, 1976), and was likely born from the electronics field where the term had been used since at least the 1940s (Alsberg and Leed, 1949). Master-slave terminology likely caught on because it was an “easy” metaphor, and at the time, “there were few Black engineers to object,” says ethno-mathematician Ron Eglash (All Together, Society of Women Engineers, 2020). Over the past 50 years, generations of circadian biologists have been taught these terms, and their use should not be a source of individual blame. However, we scientists have a duty to overcome the role science has played in the United States’s continued history of racism2 (Nobles et al., 2022). We are trained in the importance of precise language and leaving a rigorous path to follow. With a new generation of scientists comes new expectations for the way we communicate and conduct ourselves. Eliminating the “slave” oscillator won’t undo years of scientific racism, but perhaps it can be one less reason a prospective student might not come our way. It’s encouraging that it’s already more common to see the phrase “peripheral” oscillator than “slave” oscillator in research articles (Figure 1). Yet it would be remiss to attribute the growth in “peripheral” oscillators simply to changes in societal thinking. Rather, scientific advancements in the 1990s elucidated the autonomous nature of circadian oscillators proposed decades before (Pittendrigh et al., 1958). Isolated neurons were shown to retain circadian rhythms in culture (Michel et al., 1993; Welsh et al., 1995), and circadian oscillations (e.g., rhythmic clock gene expression) were found widespread throughout the periphery (Balsalobre et al., 1998; Plautz et al., 1997; Zylka et al., 1998). As such, a modern hierarchical view of circadian rhythms features a coordinating “pacemaker” rather than a vague, all-powerful “master,” and rightfully recognizes “slave” oscillators as autonomous “peripheral” oscillators.3 Nevertheless, more than a dozen articles using the outdated language are still published every year, and prospective circadian biology students continue to sit in lecture halls where the term is used. Given the prolific nature of these concepts, students may need to learn that peripheral oscillators used to be called “slave” oscillators, so they can comprehend older publications; however, we must encourage alternate terminologies be used (e.g., central/peripheral, primary/secondary, leader/follower), as these are not only less problematic, but more accurate. Altering the many articles and books already published using master-slave terminology would be a daunting, though not impossible, feat (All Together, Society of Women Engineers, 2020). More critical is that those in positions of authority modernize our field moving forward. Calls for more 1152982JBRXXX10.1177/07487304231152982JOURNAL OF BIOLOGICAL RHYTHMSBerezin / END OF THE SLAVE OSCILLATOR editorial2023\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/07487304231152982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/07487304231152982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modern Language for Modern Circadian Biologists: The End of the "Slave" Oscillator.
323 As I sat at the computer in my living room, I was not entirely shocked at the words on the slide before me. In the spring of 2021, I was in a graduate-level course on neuronal circuits and behavior; I usually attended the virtual class from home before heading into the lab to continue my research on the role of intrinsically photosensitive retinal ganglion cells on circadian behavior. Naturally, I was thrilled to get to the circadian biology lectures. That day, we discussed the role of the “master” clock in regulating “slave” oscillators throughout the body. As circadian biologists, it’s not unusual to encounter these terms, but that doesn’t mean we should continue using them.1 In his early work, Colin S. Pittendrigh, often dubbed the founder of circadian biology, discussed the light-sensitive A-oscillator and autonomous B-oscillator (Pittendrigh et al., 1958). His co-author on this 1958 paper, Peter Kaus, was a physicist credited with providing mathematical expertise for Pittendrigh’s work. The emergence of the circadian “slave oscillator” appears to originate with Kaus in 1976 (Kaus, 1976), and was likely born from the electronics field where the term had been used since at least the 1940s (Alsberg and Leed, 1949). Master-slave terminology likely caught on because it was an “easy” metaphor, and at the time, “there were few Black engineers to object,” says ethno-mathematician Ron Eglash (All Together, Society of Women Engineers, 2020). Over the past 50 years, generations of circadian biologists have been taught these terms, and their use should not be a source of individual blame. However, we scientists have a duty to overcome the role science has played in the United States’s continued history of racism2 (Nobles et al., 2022). We are trained in the importance of precise language and leaving a rigorous path to follow. With a new generation of scientists comes new expectations for the way we communicate and conduct ourselves. Eliminating the “slave” oscillator won’t undo years of scientific racism, but perhaps it can be one less reason a prospective student might not come our way. It’s encouraging that it’s already more common to see the phrase “peripheral” oscillator than “slave” oscillator in research articles (Figure 1). Yet it would be remiss to attribute the growth in “peripheral” oscillators simply to changes in societal thinking. Rather, scientific advancements in the 1990s elucidated the autonomous nature of circadian oscillators proposed decades before (Pittendrigh et al., 1958). Isolated neurons were shown to retain circadian rhythms in culture (Michel et al., 1993; Welsh et al., 1995), and circadian oscillations (e.g., rhythmic clock gene expression) were found widespread throughout the periphery (Balsalobre et al., 1998; Plautz et al., 1997; Zylka et al., 1998). As such, a modern hierarchical view of circadian rhythms features a coordinating “pacemaker” rather than a vague, all-powerful “master,” and rightfully recognizes “slave” oscillators as autonomous “peripheral” oscillators.3 Nevertheless, more than a dozen articles using the outdated language are still published every year, and prospective circadian biology students continue to sit in lecture halls where the term is used. Given the prolific nature of these concepts, students may need to learn that peripheral oscillators used to be called “slave” oscillators, so they can comprehend older publications; however, we must encourage alternate terminologies be used (e.g., central/peripheral, primary/secondary, leader/follower), as these are not only less problematic, but more accurate. Altering the many articles and books already published using master-slave terminology would be a daunting, though not impossible, feat (All Together, Society of Women Engineers, 2020). More critical is that those in positions of authority modernize our field moving forward. Calls for more 1152982JBRXXX10.1177/07487304231152982JOURNAL OF BIOLOGICAL RHYTHMSBerezin / END OF THE SLAVE OSCILLATOR editorial2023
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1