一种非参数分位数回归算法。

IF 0.6 Q4 STATISTICS & PROBABILITY Journal of Statistical Theory and Practice Pub Date : 2023-01-01 DOI:10.1007/s42519-023-00325-8
Mei Ling Huang, Yansan Han, William Marshall
{"title":"一种非参数分位数回归算法。","authors":"Mei Ling Huang,&nbsp;Yansan Han,&nbsp;William Marshall","doi":"10.1007/s42519-023-00325-8","DOIUrl":null,"url":null,"abstract":"<p><p>Extreme events, such as earthquakes, tsunamis, and market crashes, can have substantial impact on social and ecological systems. Quantile regression can be used for predicting these extreme events, making it an important problem that has applications in many fields. Estimating high conditional quantiles is a difficult problem. Regular linear quantile regression uses an <i>L</i> <sub>1</sub> loss function [Koenker in Quantile regression, Cambridge University Press, Cambridge, 2005], and the optimal solution of linear programming for estimating coefficients of regression. A problem with linear quantile regression is that the estimated curves for different quantiles can cross, a result that is logically inconsistent. To overcome the curves crossing problem, and to improve high quantile estimation in the nonlinear case, this paper proposes a nonparametric quantile regression method to estimate high conditional quantiles. A three-step computational algorithm is given, and the asymptotic properties of the proposed estimator are derived. Monte Carlo simulations show that the proposed method is more efficient than linear quantile regression method. Furthermore, this paper investigates COVID-19 and blood pressure real-world examples of extreme events by using the proposed method.</p>","PeriodicalId":45853,"journal":{"name":"Journal of Statistical Theory and Practice","volume":"17 2","pages":"32"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057703/pdf/","citationCount":"3","resultStr":"{\"title\":\"An Algorithm of Nonparametric Quantile Regression.\",\"authors\":\"Mei Ling Huang,&nbsp;Yansan Han,&nbsp;William Marshall\",\"doi\":\"10.1007/s42519-023-00325-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extreme events, such as earthquakes, tsunamis, and market crashes, can have substantial impact on social and ecological systems. Quantile regression can be used for predicting these extreme events, making it an important problem that has applications in many fields. Estimating high conditional quantiles is a difficult problem. Regular linear quantile regression uses an <i>L</i> <sub>1</sub> loss function [Koenker in Quantile regression, Cambridge University Press, Cambridge, 2005], and the optimal solution of linear programming for estimating coefficients of regression. A problem with linear quantile regression is that the estimated curves for different quantiles can cross, a result that is logically inconsistent. To overcome the curves crossing problem, and to improve high quantile estimation in the nonlinear case, this paper proposes a nonparametric quantile regression method to estimate high conditional quantiles. A three-step computational algorithm is given, and the asymptotic properties of the proposed estimator are derived. Monte Carlo simulations show that the proposed method is more efficient than linear quantile regression method. Furthermore, this paper investigates COVID-19 and blood pressure real-world examples of extreme events by using the proposed method.</p>\",\"PeriodicalId\":45853,\"journal\":{\"name\":\"Journal of Statistical Theory and Practice\",\"volume\":\"17 2\",\"pages\":\"32\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057703/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Theory and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42519-023-00325-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42519-023-00325-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

极端事件,如地震、海啸和市场崩溃,可以对社会和生态系统产生重大影响。分位数回归可以用于预测这些极端事件,使其成为一个在许多领域都有应用的重要问题。估计高条件分位数是一个难题。正则线性分位数回归使用1损失函数[Koenker in quantile regression, Cambridge University Press, Cambridge, 2005],并使用线性规划的最优解来估计回归系数。线性分位数回归的一个问题是,不同分位数的估计曲线可能交叉,结果在逻辑上是不一致的。为了克服曲线交叉问题,改进非线性情况下的高分位数估计,本文提出了一种非参数分位数回归方法来估计高条件分位数。给出了一个三步计算算法,并给出了该估计量的渐近性质。蒙特卡罗仿真结果表明,该方法比线性分位数回归方法更有效。此外,本文还利用该方法研究了COVID-19和血压极端事件的现实例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Algorithm of Nonparametric Quantile Regression.

Extreme events, such as earthquakes, tsunamis, and market crashes, can have substantial impact on social and ecological systems. Quantile regression can be used for predicting these extreme events, making it an important problem that has applications in many fields. Estimating high conditional quantiles is a difficult problem. Regular linear quantile regression uses an L 1 loss function [Koenker in Quantile regression, Cambridge University Press, Cambridge, 2005], and the optimal solution of linear programming for estimating coefficients of regression. A problem with linear quantile regression is that the estimated curves for different quantiles can cross, a result that is logically inconsistent. To overcome the curves crossing problem, and to improve high quantile estimation in the nonlinear case, this paper proposes a nonparametric quantile regression method to estimate high conditional quantiles. A three-step computational algorithm is given, and the asymptotic properties of the proposed estimator are derived. Monte Carlo simulations show that the proposed method is more efficient than linear quantile regression method. Furthermore, this paper investigates COVID-19 and blood pressure real-world examples of extreme events by using the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Theory and Practice
Journal of Statistical Theory and Practice STATISTICS & PROBABILITY-
CiteScore
1.40
自引率
0.00%
发文量
74
期刊最新文献
Applications of Deep Neural Networks with Fractal Structure and Attention Blocks for 2D and 3D Brain Tumor Segmentation. Canonical Dependency Analysis Using a Bias-Corrected $$\chi ^2$$ Statistics Matrix Simultaneous Tests for Mean Vectors and Covariance Matrices with Three-Step Monotone Missing Data A Time-Lagged Penalized Regression Model and Applications to Economic Modeling Doubly-Inflated Poisson INGARCH Models for Count Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1