{"title":"纵向变化-认知与皮质厚度和表面积的关联","authors":"Lars Nyberg , Micael Andersson , Anders Lundquist","doi":"10.1016/j.nbas.2023.100070","DOIUrl":null,"url":null,"abstract":"<div><p>Age-related changes in cortical volumes are well established but relatively few studies probed its constituents, surface area (SA) and thickness (TH). Here we analyzed 10-year, 3-waves longitudinal data from a large sample of healthy individuals (baseline age = 55–80). The findings showed marked age-related changes of SA in frontal, temporal, and parietal association cortices, and Bivariate Latent Change Score models revealed significant SA-associations with changes in speed of processing in both the 5- and 10-year models. The corresponding results for TH revealed a late onset of thinning and significant associations with reduced cognition in the 10-year model only. Taken together, our findings suggest that cortical surface area shrinks and impacts information-processing capacity gradually in aging, whereas cortical thinning only manifests and impacts fluid cognition in advanced aging.</p></div>","PeriodicalId":72131,"journal":{"name":"Aging brain","volume":"3 ","pages":"Article 100070"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/25/6b/main.PMC10318300.pdf","citationCount":"0","resultStr":"{\"title\":\"Longitudinal change-change associations of cognition with cortical thickness and surface area\",\"authors\":\"Lars Nyberg , Micael Andersson , Anders Lundquist\",\"doi\":\"10.1016/j.nbas.2023.100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Age-related changes in cortical volumes are well established but relatively few studies probed its constituents, surface area (SA) and thickness (TH). Here we analyzed 10-year, 3-waves longitudinal data from a large sample of healthy individuals (baseline age = 55–80). The findings showed marked age-related changes of SA in frontal, temporal, and parietal association cortices, and Bivariate Latent Change Score models revealed significant SA-associations with changes in speed of processing in both the 5- and 10-year models. The corresponding results for TH revealed a late onset of thinning and significant associations with reduced cognition in the 10-year model only. Taken together, our findings suggest that cortical surface area shrinks and impacts information-processing capacity gradually in aging, whereas cortical thinning only manifests and impacts fluid cognition in advanced aging.</p></div>\",\"PeriodicalId\":72131,\"journal\":{\"name\":\"Aging brain\",\"volume\":\"3 \",\"pages\":\"Article 100070\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/25/6b/main.PMC10318300.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589958923000075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging brain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589958923000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Longitudinal change-change associations of cognition with cortical thickness and surface area
Age-related changes in cortical volumes are well established but relatively few studies probed its constituents, surface area (SA) and thickness (TH). Here we analyzed 10-year, 3-waves longitudinal data from a large sample of healthy individuals (baseline age = 55–80). The findings showed marked age-related changes of SA in frontal, temporal, and parietal association cortices, and Bivariate Latent Change Score models revealed significant SA-associations with changes in speed of processing in both the 5- and 10-year models. The corresponding results for TH revealed a late onset of thinning and significant associations with reduced cognition in the 10-year model only. Taken together, our findings suggest that cortical surface area shrinks and impacts information-processing capacity gradually in aging, whereas cortical thinning only manifests and impacts fluid cognition in advanced aging.