Paritaprevir在体外和体内改善实验性急性肺损伤

IF 6.9 3区 医学 Q1 CHEMISTRY, MEDICINAL Archives of Pharmacal Research Pub Date : 2023-06-12 DOI:10.1007/s12272-023-01451-4
Rui Ren, Xin Wang, Zehui Xu, Wanglin Jiang
{"title":"Paritaprevir在体外和体内改善实验性急性肺损伤","authors":"Rui Ren,&nbsp;Xin Wang,&nbsp;Zehui Xu,&nbsp;Wanglin Jiang","doi":"10.1007/s12272-023-01451-4","DOIUrl":null,"url":null,"abstract":"<div><p>Paritaprevir is a potent inhibitor of the NS3/4A protease used to treat chronic hepatitis C virus infection. However, its therapeutic effect on acute lung injury (ALI) remains to be elucidated. In this study, we investigated the effect of paritaprevir on a lipopolysaccharide (LPS)-induced two-hit rat ALI model. The anti-ALI mechanism of paritaprevir was also studied in human pulmonary microvascular endothelial (HM) cells following LPS-induced injury in <i>vitro</i>. Administration of 30 mg/kg paritaprevir for 3 days protected rats from LPS-induced ALI, as reflected by the changes in the lung coefficient (from 0.75 to 0.64) and lung pathology scores (from 5.17 to 5.20). Furthermore, the levels of the protective adhesion protein VE-cadherin and tight junction protein claudin-5 increased, and the cytoplasmic p-FOX-O1 and nuclear β-catenin and FOX-O1 levels decreased. Similar effects were observed in vitro with LPS-treated HM cells, including decreased nuclear β-catenin and FOX-O1 levels and higher VE-cadherin and claudin-5 levels. Moreover, β-catenin inhibition resulted in higher p-FOX-O1 levels in the cytoplasm. These results suggested that paritaprevir could alleviate experimental ALI via the β-catenin/p-Akt/ FOX-O1 signaling pathway.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 6","pages":"564 - 572"},"PeriodicalIF":6.9000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01451-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Paritaprevir ameliorates experimental acute lung injury in vitro and in vivo\",\"authors\":\"Rui Ren,&nbsp;Xin Wang,&nbsp;Zehui Xu,&nbsp;Wanglin Jiang\",\"doi\":\"10.1007/s12272-023-01451-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Paritaprevir is a potent inhibitor of the NS3/4A protease used to treat chronic hepatitis C virus infection. However, its therapeutic effect on acute lung injury (ALI) remains to be elucidated. In this study, we investigated the effect of paritaprevir on a lipopolysaccharide (LPS)-induced two-hit rat ALI model. The anti-ALI mechanism of paritaprevir was also studied in human pulmonary microvascular endothelial (HM) cells following LPS-induced injury in <i>vitro</i>. Administration of 30 mg/kg paritaprevir for 3 days protected rats from LPS-induced ALI, as reflected by the changes in the lung coefficient (from 0.75 to 0.64) and lung pathology scores (from 5.17 to 5.20). Furthermore, the levels of the protective adhesion protein VE-cadherin and tight junction protein claudin-5 increased, and the cytoplasmic p-FOX-O1 and nuclear β-catenin and FOX-O1 levels decreased. Similar effects were observed in vitro with LPS-treated HM cells, including decreased nuclear β-catenin and FOX-O1 levels and higher VE-cadherin and claudin-5 levels. Moreover, β-catenin inhibition resulted in higher p-FOX-O1 levels in the cytoplasm. These results suggested that paritaprevir could alleviate experimental ALI via the β-catenin/p-Akt/ FOX-O1 signaling pathway.</p></div>\",\"PeriodicalId\":8287,\"journal\":{\"name\":\"Archives of Pharmacal Research\",\"volume\":\"46 6\",\"pages\":\"564 - 572\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12272-023-01451-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Pharmacal Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12272-023-01451-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12272-023-01451-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

Paritarevir是NS3/4A蛋白酶的有效抑制剂,用于治疗慢性丙型肝炎病毒感染。然而,其对急性肺损伤(ALI)的治疗作用仍有待阐明。在本研究中,我们研究了帕利他韦对脂多糖(LPS)诱导的两次撞击大鼠ALI模型的影响。本文还研究了帕利他韦在体外LPS诱导的人肺微血管内皮细胞损伤后的抗ALI机制。30 mg/kg帕利他韦连续3天可保护大鼠免受LPS诱导的ALI,肺系数(从0.75到0.64)和肺病理评分(从5.17到5.20)的变化反映了这一点。此外,保护性粘附蛋白VE钙粘蛋白和紧密连接蛋白claudin-5的水平增加,β-连环蛋白和FOX-O1水平下降。LPS处理的HM细胞在体外也观察到类似的作用,包括降低核β-连环蛋白和FOX-O1水平,以及升高VE钙粘蛋白和claudin-5水平。此外,β-连环蛋白抑制导致细胞质中p-FOX-O1水平升高。这些结果表明,帕利他韦可以通过β-catenin/p-Akt/FOX-O1信号通路减轻实验性ALI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Paritaprevir ameliorates experimental acute lung injury in vitro and in vivo

Paritaprevir is a potent inhibitor of the NS3/4A protease used to treat chronic hepatitis C virus infection. However, its therapeutic effect on acute lung injury (ALI) remains to be elucidated. In this study, we investigated the effect of paritaprevir on a lipopolysaccharide (LPS)-induced two-hit rat ALI model. The anti-ALI mechanism of paritaprevir was also studied in human pulmonary microvascular endothelial (HM) cells following LPS-induced injury in vitro. Administration of 30 mg/kg paritaprevir for 3 days protected rats from LPS-induced ALI, as reflected by the changes in the lung coefficient (from 0.75 to 0.64) and lung pathology scores (from 5.17 to 5.20). Furthermore, the levels of the protective adhesion protein VE-cadherin and tight junction protein claudin-5 increased, and the cytoplasmic p-FOX-O1 and nuclear β-catenin and FOX-O1 levels decreased. Similar effects were observed in vitro with LPS-treated HM cells, including decreased nuclear β-catenin and FOX-O1 levels and higher VE-cadherin and claudin-5 levels. Moreover, β-catenin inhibition resulted in higher p-FOX-O1 levels in the cytoplasm. These results suggested that paritaprevir could alleviate experimental ALI via the β-catenin/p-Akt/ FOX-O1 signaling pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.40
自引率
9.00%
发文量
48
审稿时长
3.3 months
期刊介绍: Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.
期刊最新文献
Saponins as potential novel NLRP3 inflammasome inhibitors for inflammatory disorders. Modulating versatile pathways using a cleavable PEG shell and EGFR-targeted nanoparticles to deliver CRISPR-Cas9 and docetaxel for triple-negative breast cancer inhibition. Ginsenoside Rg3 activates the immune function of CD8+ T cells via circFOXP1-miR-4477a-PD-L1 axis to induce ferroptosis in gallbladder cancer. Potential effects of a human milk oligosaccharide 6'-sialyllactose on angiotensin II-induced aortic aneurysm via p90RSK/TGF-β/SMAD2 signaling pathway. Akt-activated GSK3β inhibitory peptide effectively blocks tau hyperphosphorylation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1