Caleb Mayer, Olivia Walch, Daniel B Forger, Kevin Hannay
{"title":"光照时间表和模式参数对个体昼夜节律结果的影响。","authors":"Caleb Mayer, Olivia Walch, Daniel B Forger, Kevin Hannay","doi":"10.1177/07487304231176936","DOIUrl":null,"url":null,"abstract":"<p><p>Key differences exist between individuals in terms of certain circadian-related parameters, such as intrinsic period and sensitivity to light. These variations can differentially impact circadian timing, leading to challenges in accurately implementing time-sensitive interventions. In this work, we parse out these effects by investigating the impact of parameters from a macroscopic model of human circadian rhythms on phase and amplitude outputs. Using in silico light data designed to mimic commonly studied schedules, we assess the impact of parameter variations on model outputs to gain insight into the different effects of these schedules. We show that parameter sensitivity is heavily modulated by the lighting routine that a person follows, with darkness and shift work schedules being the most sensitive. We develop a framework to measure overall sensitivity levels of the given light schedule and furthermore decompose the overall sensitivity into individual parameter contributions. Finally, we measure the ability of the model to extract parameters given light schedules with noise and show that key parameters like the circadian period can typically be recovered given known light history. This can inform future work on determining the key parameters to consider when personalizing a model and the lighting protocols to use when assessing interindividual variability.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":"38 4","pages":"379-391"},"PeriodicalIF":2.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Light Schedules and Model Parameters on the Circadian Outcomes of Individuals.\",\"authors\":\"Caleb Mayer, Olivia Walch, Daniel B Forger, Kevin Hannay\",\"doi\":\"10.1177/07487304231176936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Key differences exist between individuals in terms of certain circadian-related parameters, such as intrinsic period and sensitivity to light. These variations can differentially impact circadian timing, leading to challenges in accurately implementing time-sensitive interventions. In this work, we parse out these effects by investigating the impact of parameters from a macroscopic model of human circadian rhythms on phase and amplitude outputs. Using in silico light data designed to mimic commonly studied schedules, we assess the impact of parameter variations on model outputs to gain insight into the different effects of these schedules. We show that parameter sensitivity is heavily modulated by the lighting routine that a person follows, with darkness and shift work schedules being the most sensitive. We develop a framework to measure overall sensitivity levels of the given light schedule and furthermore decompose the overall sensitivity into individual parameter contributions. Finally, we measure the ability of the model to extract parameters given light schedules with noise and show that key parameters like the circadian period can typically be recovered given known light history. This can inform future work on determining the key parameters to consider when personalizing a model and the lighting protocols to use when assessing interindividual variability.</p>\",\"PeriodicalId\":15056,\"journal\":{\"name\":\"Journal of Biological Rhythms\",\"volume\":\"38 4\",\"pages\":\"379-391\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Rhythms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/07487304231176936\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Rhythms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/07487304231176936","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Impact of Light Schedules and Model Parameters on the Circadian Outcomes of Individuals.
Key differences exist between individuals in terms of certain circadian-related parameters, such as intrinsic period and sensitivity to light. These variations can differentially impact circadian timing, leading to challenges in accurately implementing time-sensitive interventions. In this work, we parse out these effects by investigating the impact of parameters from a macroscopic model of human circadian rhythms on phase and amplitude outputs. Using in silico light data designed to mimic commonly studied schedules, we assess the impact of parameter variations on model outputs to gain insight into the different effects of these schedules. We show that parameter sensitivity is heavily modulated by the lighting routine that a person follows, with darkness and shift work schedules being the most sensitive. We develop a framework to measure overall sensitivity levels of the given light schedule and furthermore decompose the overall sensitivity into individual parameter contributions. Finally, we measure the ability of the model to extract parameters given light schedules with noise and show that key parameters like the circadian period can typically be recovered given known light history. This can inform future work on determining the key parameters to consider when personalizing a model and the lighting protocols to use when assessing interindividual variability.
期刊介绍:
Journal of Biological Rhythms is the official journal of the Society for Research on Biological Rhythms and offers peer-reviewed original research in all aspects of biological rhythms, using genetic, biochemical, physiological, behavioral, epidemiological & modeling approaches, as well as clinical trials. Emphasis is on circadian and seasonal rhythms, but timely reviews and research on other periodicities are also considered. The journal is a member of the Committee on Publication Ethics (COPE).