走向杂种优势的系统生物学:拟南芥代谢组的分子网络结构假说。

Sandra Andorf, Tanja Gärtner, Matthias Steinfath, Hanna Witucka-Wall, Thomas Altmann, Dirk Repsilber
{"title":"走向杂种优势的系统生物学:拟南芥代谢组的分子网络结构假说。","authors":"Sandra Andorf,&nbsp;Tanja Gärtner,&nbsp;Matthias Steinfath,&nbsp;Hanna Witucka-Wall,&nbsp;Thomas Altmann,&nbsp;Dirk Repsilber","doi":"10.1155/2009/147157","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a network structure-based model for heterosis, and investigate it relying on metabolite profiles from Arabidopsis. A simple feed-forward two-layer network model (the Steinbuch matrix) is used in our conceptual approach. It allows for directly relating structural network properties with biological function. Interpreting heterosis as increased adaptability, our model predicts that the biological networks involved show increasing connectivity of regulatory interactions. A detailed analysis of metabolite profile data reveals that the increasing-connectivity prediction is true for graphical Gaussian models in our data from early development. This mirrors properties of observed heterotic Arabidopsis phenotypes. Furthermore, the model predicts a limit for increasing hybrid vigor with increasing heterozygosity--a known phenomenon in the literature.</p>","PeriodicalId":72957,"journal":{"name":"EURASIP journal on bioinformatics & systems biology","volume":" ","pages":"147157"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2009/147157","citationCount":"12","resultStr":"{\"title\":\"Towards systems biology of heterosis: a hypothesis about molecular network structure applied for the Arabidopsis metabolome.\",\"authors\":\"Sandra Andorf,&nbsp;Tanja Gärtner,&nbsp;Matthias Steinfath,&nbsp;Hanna Witucka-Wall,&nbsp;Thomas Altmann,&nbsp;Dirk Repsilber\",\"doi\":\"10.1155/2009/147157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a network structure-based model for heterosis, and investigate it relying on metabolite profiles from Arabidopsis. A simple feed-forward two-layer network model (the Steinbuch matrix) is used in our conceptual approach. It allows for directly relating structural network properties with biological function. Interpreting heterosis as increased adaptability, our model predicts that the biological networks involved show increasing connectivity of regulatory interactions. A detailed analysis of metabolite profile data reveals that the increasing-connectivity prediction is true for graphical Gaussian models in our data from early development. This mirrors properties of observed heterotic Arabidopsis phenotypes. Furthermore, the model predicts a limit for increasing hybrid vigor with increasing heterozygosity--a known phenomenon in the literature.</p>\",\"PeriodicalId\":72957,\"journal\":{\"name\":\"EURASIP journal on bioinformatics & systems biology\",\"volume\":\" \",\"pages\":\"147157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2009/147157\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP journal on bioinformatics & systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2009/147157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP journal on bioinformatics & systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2009/147157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一个基于网络结构的杂种优势模型,并根据拟南芥的代谢物谱对其进行了研究。在我们的概念方法中使用了一个简单的前馈两层网络模型(Steinbuch矩阵)。它允许将结构网络特性与生物功能直接联系起来。将杂种优势解释为适应性的增强,我们的模型预测,涉及的生物网络显示出越来越多的调节相互作用的连通性。对代谢物剖面数据的详细分析表明,在我们早期发展的数据中,图形高斯模型的连通性预测是正确的。这反映了观察到的拟南芥杂种表型的特性。此外,该模型还预测了杂合度增加对杂种活力增加的限制——这是文献中已知的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards systems biology of heterosis: a hypothesis about molecular network structure applied for the Arabidopsis metabolome.

We propose a network structure-based model for heterosis, and investigate it relying on metabolite profiles from Arabidopsis. A simple feed-forward two-layer network model (the Steinbuch matrix) is used in our conceptual approach. It allows for directly relating structural network properties with biological function. Interpreting heterosis as increased adaptability, our model predicts that the biological networks involved show increasing connectivity of regulatory interactions. A detailed analysis of metabolite profile data reveals that the increasing-connectivity prediction is true for graphical Gaussian models in our data from early development. This mirrors properties of observed heterotic Arabidopsis phenotypes. Furthermore, the model predicts a limit for increasing hybrid vigor with increasing heterozygosity--a known phenomenon in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data. On biometric systems: electrocardiogram Gaussianity and data synthesis. BCC-NER: bidirectional, contextual clues named entity tagger for gene/protein mention recognition. Review of stochastic hybrid systems with applications in biological systems modeling and analysis. Bayesian inference for biomarker discovery in proteomics: an analytic solution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1