{"title":"[用于未来输血医学的红细胞的体外生产]。","authors":"Ryo Kurita","doi":"10.11406/rinketsu.64.482","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale in vitro red blood cell (RBC) production has been attempted in recent years. Potential cell sources for RBC production include hematopoietic stem/progenitor cells, pluripotent stem cells, and immortalized erythroid progenitor cell lines, which can induce enucleated RBCs with characteristics such as oxygen-carrying capacity and deformability. A phase I clinical study of cultured RBCs produced from hematopoietic stem/progenitor cells has revealed a similar in vivo half-life between cultured and native RBCs. Thus, the application of cultured RBCs in blood transfusion is gradually advancing. However, a single transfusion requires a large number of cells, unlike other cell therapies. Therefore, developing a method to mass-produce RBCs from a small culture volume at a low cost is important in the future. This review summarizes the current status and prospects concerning in vitro RBC production using each cell source, which can improve future transfusion medicine.</p>","PeriodicalId":6352,"journal":{"name":"[Rinsho ketsueki] The Japanese journal of clinical hematology","volume":"64 6","pages":"482-488"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[In vitro production of red blood cells for future transfusion medicine].\",\"authors\":\"Ryo Kurita\",\"doi\":\"10.11406/rinketsu.64.482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large-scale in vitro red blood cell (RBC) production has been attempted in recent years. Potential cell sources for RBC production include hematopoietic stem/progenitor cells, pluripotent stem cells, and immortalized erythroid progenitor cell lines, which can induce enucleated RBCs with characteristics such as oxygen-carrying capacity and deformability. A phase I clinical study of cultured RBCs produced from hematopoietic stem/progenitor cells has revealed a similar in vivo half-life between cultured and native RBCs. Thus, the application of cultured RBCs in blood transfusion is gradually advancing. However, a single transfusion requires a large number of cells, unlike other cell therapies. Therefore, developing a method to mass-produce RBCs from a small culture volume at a low cost is important in the future. This review summarizes the current status and prospects concerning in vitro RBC production using each cell source, which can improve future transfusion medicine.</p>\",\"PeriodicalId\":6352,\"journal\":{\"name\":\"[Rinsho ketsueki] The Japanese journal of clinical hematology\",\"volume\":\"64 6\",\"pages\":\"482-488\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Rinsho ketsueki] The Japanese journal of clinical hematology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11406/rinketsu.64.482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Rinsho ketsueki] The Japanese journal of clinical hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11406/rinketsu.64.482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[In vitro production of red blood cells for future transfusion medicine].
Large-scale in vitro red blood cell (RBC) production has been attempted in recent years. Potential cell sources for RBC production include hematopoietic stem/progenitor cells, pluripotent stem cells, and immortalized erythroid progenitor cell lines, which can induce enucleated RBCs with characteristics such as oxygen-carrying capacity and deformability. A phase I clinical study of cultured RBCs produced from hematopoietic stem/progenitor cells has revealed a similar in vivo half-life between cultured and native RBCs. Thus, the application of cultured RBCs in blood transfusion is gradually advancing. However, a single transfusion requires a large number of cells, unlike other cell therapies. Therefore, developing a method to mass-produce RBCs from a small culture volume at a low cost is important in the future. This review summarizes the current status and prospects concerning in vitro RBC production using each cell source, which can improve future transfusion medicine.