具有混合数据划分和离散同时扰动随机近似的行为干预的特征动态建模。

Rachael T Kha, Daniel E Rivera, Predrag Klasnja, Eric Hekler
{"title":"具有混合数据划分和离散同时扰动随机近似的行为干预的特征动态建模。","authors":"Rachael T Kha,&nbsp;Daniel E Rivera,&nbsp;Predrag Klasnja,&nbsp;Eric Hekler","doi":"10.23919/acc55779.2023.10156304","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the use of discrete simultaneous perturbation stochastic approximation (DSPSA) as a routine method to efficiently determine features and parameters of idiographic (i.e. single subject) dynamic models for personalized behavioral interventions using various partitions of estimation and validation data. DSPSA is demonstrated as a valuable method to search over model features and regressor orders of AutoRegressive with eXogenous input estimated models using participant data from <i>Just Walk</i> (a behavioral intervention to promote physical activity in sedentary adults); results of DSPSA are compared to those of exhaustive search. In <i>Just Walk</i>, DSPSA efficiently and quickly estimates models of walking behavior, which can then be used to develop control systems to optimize the impacts of behavioral interventions. The use of DSPSA to evaluate models using various partitions of individual data into estimation and validation data sets also highlights data partitioning as an important feature of idiographic modeling that should be carefully considered.</p>","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":"2023 ","pages":"283-288"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327578/pdf/nihms-1897912.pdf","citationCount":"0","resultStr":"{\"title\":\"Idiographic Dynamic Modeling for Behavioral Interventions with Mixed Data Partitioning and Discrete Simultaneous Perturbation Stochastic Approximation.\",\"authors\":\"Rachael T Kha,&nbsp;Daniel E Rivera,&nbsp;Predrag Klasnja,&nbsp;Eric Hekler\",\"doi\":\"10.23919/acc55779.2023.10156304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the use of discrete simultaneous perturbation stochastic approximation (DSPSA) as a routine method to efficiently determine features and parameters of idiographic (i.e. single subject) dynamic models for personalized behavioral interventions using various partitions of estimation and validation data. DSPSA is demonstrated as a valuable method to search over model features and regressor orders of AutoRegressive with eXogenous input estimated models using participant data from <i>Just Walk</i> (a behavioral intervention to promote physical activity in sedentary adults); results of DSPSA are compared to those of exhaustive search. In <i>Just Walk</i>, DSPSA efficiently and quickly estimates models of walking behavior, which can then be used to develop control systems to optimize the impacts of behavioral interventions. The use of DSPSA to evaluate models using various partitions of individual data into estimation and validation data sets also highlights data partitioning as an important feature of idiographic modeling that should be carefully considered.</p>\",\"PeriodicalId\":74510,\"journal\":{\"name\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"volume\":\"2023 \",\"pages\":\"283-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327578/pdf/nihms-1897912.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... American Control Conference. American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/acc55779.2023.10156304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc55779.2023.10156304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了使用离散同时扰动随机近似(DSPSA)作为一种常规方法,使用各种估计和验证数据分区,有效地确定个性化行为干预的具体(即单受试者)动态模型的特征和参数。DSPSA被证明是一种有价值的方法,可以使用Just Walk(一种促进久坐成年人体育活动的行为干预)的参与者数据来搜索具有原始输入估计模型的自回归的模型特征和回归阶数;将DSPSA的结果与穷举搜索的结果进行了比较。在Just Walk中,DSPSA高效快速地估计步行行为的模型,然后可以用于开发控制系统,以优化行为干预的影响。使用DSPSA评估模型,将单个数据划分为估计和验证数据集,也突出了数据划分是具体建模的一个重要特征,应仔细考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Idiographic Dynamic Modeling for Behavioral Interventions with Mixed Data Partitioning and Discrete Simultaneous Perturbation Stochastic Approximation.

This paper presents the use of discrete simultaneous perturbation stochastic approximation (DSPSA) as a routine method to efficiently determine features and parameters of idiographic (i.e. single subject) dynamic models for personalized behavioral interventions using various partitions of estimation and validation data. DSPSA is demonstrated as a valuable method to search over model features and regressor orders of AutoRegressive with eXogenous input estimated models using participant data from Just Walk (a behavioral intervention to promote physical activity in sedentary adults); results of DSPSA are compared to those of exhaustive search. In Just Walk, DSPSA efficiently and quickly estimates models of walking behavior, which can then be used to develop control systems to optimize the impacts of behavioral interventions. The use of DSPSA to evaluate models using various partitions of individual data into estimation and validation data sets also highlights data partitioning as an important feature of idiographic modeling that should be carefully considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Closed-Loop Multimodal Neuromodulation of Vagus Nerve for Control of Heart Rate. Idiographic Dynamic Modeling for Behavioral Interventions with Mixed Data Partitioning and Discrete Simultaneous Perturbation Stochastic Approximation. System Identification and Hybrid Model Predictive Control in Personalized mHealth Interventions for Physical Activity. Reinforcement Learning Data-Acquiring for Causal Inference of Regulatory Networks. Integral Quadratic Constraints with Infinite-Dimensional Channels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1