Ragulator复合体:探究其对新陈代谢及其他方面的多功能影响。

IF 5 3区 医学 Q2 IMMUNOLOGY Inflammation and Regeneration Pub Date : 2023-05-12 DOI:10.1186/s41232-023-00278-2
Kohei Tsujimoto, Hyota Takamatsu, Atsushi Kumanogoh
{"title":"Ragulator复合体:探究其对新陈代谢及其他方面的多功能影响。","authors":"Kohei Tsujimoto, Hyota Takamatsu, Atsushi Kumanogoh","doi":"10.1186/s41232-023-00278-2","DOIUrl":null,"url":null,"abstract":"<p><p>Our understanding of lysosomes has undergone a significant transformation in recent years, from the view that they are static organelles primarily responsible for the disposal and recycling of cellular waste to their recognition as highly dynamic structures. Current research posits that lysosomes function as a signaling hub that integrates both extracellular and intracellular stimuli, thereby regulating cellular homeostasis. The dysregulation of lysosomal function has been linked to a wide range of diseases. Of note, lysosomes contribute to the activation of mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cellular metabolism. The Ragulator complex, a protein complex anchored on the lysosomal membrane, was initially shown to tether the mTORC1 complex to lysosomes. Recent research has substantially expanded our understanding of the roles of the Ragulator complex in lysosomes, including roles in the regulation of metabolism, inflammation, cell death, cell migration, and the maintenance of homeostasis, via interactions with various proteins. This review summarizes our current knowledge on the diverse functions of the Ragulator complex, highlighting important protein interactions.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":"43 1","pages":"28"},"PeriodicalIF":5.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175929/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Ragulator complex: delving its multifunctional impact on metabolism and beyond.\",\"authors\":\"Kohei Tsujimoto, Hyota Takamatsu, Atsushi Kumanogoh\",\"doi\":\"10.1186/s41232-023-00278-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our understanding of lysosomes has undergone a significant transformation in recent years, from the view that they are static organelles primarily responsible for the disposal and recycling of cellular waste to their recognition as highly dynamic structures. Current research posits that lysosomes function as a signaling hub that integrates both extracellular and intracellular stimuli, thereby regulating cellular homeostasis. The dysregulation of lysosomal function has been linked to a wide range of diseases. Of note, lysosomes contribute to the activation of mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cellular metabolism. The Ragulator complex, a protein complex anchored on the lysosomal membrane, was initially shown to tether the mTORC1 complex to lysosomes. Recent research has substantially expanded our understanding of the roles of the Ragulator complex in lysosomes, including roles in the regulation of metabolism, inflammation, cell death, cell migration, and the maintenance of homeostasis, via interactions with various proteins. This review summarizes our current knowledge on the diverse functions of the Ragulator complex, highlighting important protein interactions.</p>\",\"PeriodicalId\":13588,\"journal\":{\"name\":\"Inflammation and Regeneration\",\"volume\":\"43 1\",\"pages\":\"28\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175929/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s41232-023-00278-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41232-023-00278-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,我们对溶酶体的认识发生了重大转变,从认为溶酶体是主要负责处理和回收细胞废物的静态细胞器,转变为认为溶酶体是高度动态的结构。目前的研究认为,溶酶体具有信号枢纽的功能,可以整合细胞外和细胞内的刺激,从而调节细胞的平衡。溶酶体功能失调与多种疾病有关。值得注意的是,溶酶体有助于激活哺乳动物雷帕霉素靶复合物 1(mTORC1),这是细胞新陈代谢的关键调节因子。Ragulator 复合物是一种锚定在溶酶体膜上的蛋白质复合物,最初被证明能将 mTORC1 复合物拴在溶酶体上。最近的研究大大扩展了我们对 Ragulator 复合物在溶酶体中作用的认识,包括通过与各种蛋白质的相互作用在调节新陈代谢、炎症、细胞死亡、细胞迁移和维持体内平衡中的作用。本综述总结了我们目前对 Ragulator 复合物各种功能的了解,并重点介绍了重要的蛋白质相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Ragulator complex: delving its multifunctional impact on metabolism and beyond.

Our understanding of lysosomes has undergone a significant transformation in recent years, from the view that they are static organelles primarily responsible for the disposal and recycling of cellular waste to their recognition as highly dynamic structures. Current research posits that lysosomes function as a signaling hub that integrates both extracellular and intracellular stimuli, thereby regulating cellular homeostasis. The dysregulation of lysosomal function has been linked to a wide range of diseases. Of note, lysosomes contribute to the activation of mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cellular metabolism. The Ragulator complex, a protein complex anchored on the lysosomal membrane, was initially shown to tether the mTORC1 complex to lysosomes. Recent research has substantially expanded our understanding of the roles of the Ragulator complex in lysosomes, including roles in the regulation of metabolism, inflammation, cell death, cell migration, and the maintenance of homeostasis, via interactions with various proteins. This review summarizes our current knowledge on the diverse functions of the Ragulator complex, highlighting important protein interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
1.20%
发文量
45
审稿时长
11 weeks
期刊介绍: Inflammation and Regeneration is the official journal of the Japanese Society of Inflammation and Regeneration (JSIR). This journal provides an open access forum which covers a wide range of scientific topics in the basic and clinical researches on inflammation and regenerative medicine. It also covers investigations of infectious diseases, including COVID-19 and other emerging infectious diseases, which involve the inflammatory responses. Inflammation and Regeneration publishes papers in the following categories: research article, note, rapid communication, case report, review and clinical drug evaluation.
期刊最新文献
Th22 is the effector cell of thymosin β15-induced hair regeneration in mice The gut-liver axis in hepatobiliary diseases Unveiling dynamic interactions: in vivo imaging chronicles inflammation and regeneration in living organisms Inter-organ communication involved in metabolic regulation at the whole-body level A disease-specific iPS cell resource for studying rare and intractable diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1