机器学习与中风风险预测难题。

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Arrhythmia & Electrophysiology Review Pub Date : 2023-04-12 eCollection Date: 2023-01-01 DOI:10.15420/aer.2022.34
Yaacoub Chahine, Matthew J Magoon, Bahetihazi Maidu, Juan C Del Álamo, Patrick M Boyle, Nazem Akoum
{"title":"机器学习与中风风险预测难题。","authors":"Yaacoub Chahine, Matthew J Magoon, Bahetihazi Maidu, Juan C Del Álamo, Patrick M Boyle, Nazem Akoum","doi":"10.15420/aer.2022.34","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is a leading cause of death worldwide. With escalating healthcare costs, early non-invasive stroke risk stratification is vital. The current paradigm of stroke risk assessment and mitigation is focused on clinical risk factors and comorbidities. Standard algorithms predict risk using regression-based statistical associations, which, while useful and easy to use, have moderate predictive accuracy. This review summarises recent efforts to deploy machine learning (ML) to predict stroke risk and enrich the understanding of the mechanisms underlying stroke. The surveyed body of literature includes studies comparing ML algorithms with conventional statistical models for predicting cardiovascular disease and, in particular, different stroke subtypes. Another avenue of research explored is ML as a means of enriching multiscale computational modelling, which holds great promise for revealing thrombogenesis mechanisms. Overall, ML offers a new approach to stroke risk stratification that accounts for subtle physiologic variants between patients, potentially leading to more reliable and personalised predictions than standard regression-based statistical associations.</p>","PeriodicalId":8412,"journal":{"name":"Arrhythmia & Electrophysiology Review","volume":"12 ","pages":"e07"},"PeriodicalIF":2.6000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e5/9f/aer-12-e07.PMC10326666.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine Learning and the Conundrum of Stroke Risk Prediction.\",\"authors\":\"Yaacoub Chahine, Matthew J Magoon, Bahetihazi Maidu, Juan C Del Álamo, Patrick M Boyle, Nazem Akoum\",\"doi\":\"10.15420/aer.2022.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stroke is a leading cause of death worldwide. With escalating healthcare costs, early non-invasive stroke risk stratification is vital. The current paradigm of stroke risk assessment and mitigation is focused on clinical risk factors and comorbidities. Standard algorithms predict risk using regression-based statistical associations, which, while useful and easy to use, have moderate predictive accuracy. This review summarises recent efforts to deploy machine learning (ML) to predict stroke risk and enrich the understanding of the mechanisms underlying stroke. The surveyed body of literature includes studies comparing ML algorithms with conventional statistical models for predicting cardiovascular disease and, in particular, different stroke subtypes. Another avenue of research explored is ML as a means of enriching multiscale computational modelling, which holds great promise for revealing thrombogenesis mechanisms. Overall, ML offers a new approach to stroke risk stratification that accounts for subtle physiologic variants between patients, potentially leading to more reliable and personalised predictions than standard regression-based statistical associations.</p>\",\"PeriodicalId\":8412,\"journal\":{\"name\":\"Arrhythmia & Electrophysiology Review\",\"volume\":\"12 \",\"pages\":\"e07\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e5/9f/aer-12-e07.PMC10326666.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arrhythmia & Electrophysiology Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15420/aer.2022.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arrhythmia & Electrophysiology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15420/aer.2022.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

中风是世界范围内的主要死亡原因。随着医疗成本的不断上升,早期非侵入性卒中风险分层至关重要。目前卒中风险评估和缓解的范式主要集中在临床风险因素和合并症上。标准算法使用基于回归的统计关联来预测风险,这种方法虽然有用且易于使用,但预测准确性不高。这篇综述总结了最近在利用机器学习(ML)预测中风风险和丰富对中风机制的理解方面所做的努力。所调查的文献包括比较ML算法与传统统计模型预测心血管疾病,特别是不同中风亚型的研究。研究探索的另一个途径是ML作为丰富多尺度计算模型的手段,这对揭示血栓形成机制具有很大的希望。总的来说,ML提供了一种新的中风风险分层方法,可以解释患者之间微妙的生理变异,可能比基于标准回归的统计关联更可靠和个性化的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning and the Conundrum of Stroke Risk Prediction.

Stroke is a leading cause of death worldwide. With escalating healthcare costs, early non-invasive stroke risk stratification is vital. The current paradigm of stroke risk assessment and mitigation is focused on clinical risk factors and comorbidities. Standard algorithms predict risk using regression-based statistical associations, which, while useful and easy to use, have moderate predictive accuracy. This review summarises recent efforts to deploy machine learning (ML) to predict stroke risk and enrich the understanding of the mechanisms underlying stroke. The surveyed body of literature includes studies comparing ML algorithms with conventional statistical models for predicting cardiovascular disease and, in particular, different stroke subtypes. Another avenue of research explored is ML as a means of enriching multiscale computational modelling, which holds great promise for revealing thrombogenesis mechanisms. Overall, ML offers a new approach to stroke risk stratification that accounts for subtle physiologic variants between patients, potentially leading to more reliable and personalised predictions than standard regression-based statistical associations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arrhythmia & Electrophysiology Review
Arrhythmia & Electrophysiology Review CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
5.10
自引率
6.70%
发文量
22
审稿时长
7 weeks
期刊最新文献
Revisiting the Atrioventricular Conduction Axis for the 21st Century. Conduction System Pacing in Children and Congenital Heart Disease. Association Between Atrial Fibrillation and Long-term Mortality in Acute MI Patients. Incidence, Risk Factors and Predictors of Phantom Shocks in Patients with Implantable Cardioverter Defibrillators: State-of-the-art Review. Dynamic Voltage Mapping of the Post-infarct Ventricular Tachycardia Substrate: A Practical Technique to Help Differentiate Scar from Borderzone Tissue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1