Neha Atulkumar Singh, Peter R Martin, Jonathan Graff-Radford, Irene Sintini, Mary M Machulda, Joseph R Duffy, Jeffrey L Gunter, Hugo Botha, David T Jones, Val J Lowe, Clifford R Jack, Keith A Josephs, Jennifer L Whitwell
{"title":"非典型阿尔茨海默氏症患者网络内和网络间功能连接的改变","authors":"Neha Atulkumar Singh, Peter R Martin, Jonathan Graff-Radford, Irene Sintini, Mary M Machulda, Joseph R Duffy, Jeffrey L Gunter, Hugo Botha, David T Jones, Val J Lowe, Clifford R Jack, Keith A Josephs, Jennifer L Whitwell","doi":"10.1093/braincomms/fcad184","DOIUrl":null,"url":null,"abstract":"<p><p>Posterior cortical atrophy and logopenic progressive aphasia are atypical clinical presentations of Alzheimer's disease. Resting-state functional connectivity studies have shown functional network disruptions in both phenotypes, particularly involving the language network in logopenic progressive aphasia and the visual network in posterior cortical atrophy. However, little is known about how connectivity differs both within and between brain networks in these atypical Alzheimer's disease phenotypes. A cohort of 144 patients was recruited by the Neurodegenerative Research Group at Mayo Clinic, Rochester, MN, USA, and underwent structural and resting-state functional MRI. Spatially preprocessed data were analysed to explore the default mode network and the salience, sensorimotor, language, visual and memory networks. The data were analysed at the voxel and network levels. Bayesian hierarchical linear models adjusted for age and sex were used to analyse within- and between-network connectivity. Reduced within-network connectivity was observed in the language network in both phenotypes, with stronger evidence of reductions in logopenic progressive aphasia compared to controls. Only posterior cortical atrophy showed reduced within-network connectivity in the visual network compared to controls. Both phenotypes showed reduced within-network connectivity in the default mode and sensorimotor networks. No significant change was noted in the memory network, but a slight increase in the salience within-network connectivity was seen in both phenotypes compared to controls. Between-network analysis in posterior cortical atrophy showed evidence of reduced visual-to-language network connectivity, with reduced visual-to-salience network connectivity, compared to controls. An increase in visual-to-default mode network connectivity was noted in posterior cortical atrophy compared to controls. Between-network analysis in logopenic progressive aphasia showed evidence of reduced language-to-visual network connectivity and an increase in language-to-salience network connectivity compared to controls. Findings from the voxel-level and network-level analysis were in line with the Bayesian hierarchical linear model analysis, showing reduced connectivity in the dominant network based on diagnosis and more crosstalk between networks in general compared to controls. The atypical Alzheimer's disease phenotypes were associated with disruptions in connectivity, both within and between brain networks. Phenotype-specific differences in connectivity patterns were noted in the visual network for posterior cortical atrophy and the language network for logopenic progressive aphasia.</p>","PeriodicalId":9318,"journal":{"name":"Brain Communications","volume":"5 4","pages":"fcad184"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331277/pdf/","citationCount":"0","resultStr":"{\"title\":\"Altered within- and between-network functional connectivity in atypical Alzheimer's disease.\",\"authors\":\"Neha Atulkumar Singh, Peter R Martin, Jonathan Graff-Radford, Irene Sintini, Mary M Machulda, Joseph R Duffy, Jeffrey L Gunter, Hugo Botha, David T Jones, Val J Lowe, Clifford R Jack, Keith A Josephs, Jennifer L Whitwell\",\"doi\":\"10.1093/braincomms/fcad184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Posterior cortical atrophy and logopenic progressive aphasia are atypical clinical presentations of Alzheimer's disease. Resting-state functional connectivity studies have shown functional network disruptions in both phenotypes, particularly involving the language network in logopenic progressive aphasia and the visual network in posterior cortical atrophy. However, little is known about how connectivity differs both within and between brain networks in these atypical Alzheimer's disease phenotypes. A cohort of 144 patients was recruited by the Neurodegenerative Research Group at Mayo Clinic, Rochester, MN, USA, and underwent structural and resting-state functional MRI. Spatially preprocessed data were analysed to explore the default mode network and the salience, sensorimotor, language, visual and memory networks. The data were analysed at the voxel and network levels. Bayesian hierarchical linear models adjusted for age and sex were used to analyse within- and between-network connectivity. Reduced within-network connectivity was observed in the language network in both phenotypes, with stronger evidence of reductions in logopenic progressive aphasia compared to controls. Only posterior cortical atrophy showed reduced within-network connectivity in the visual network compared to controls. Both phenotypes showed reduced within-network connectivity in the default mode and sensorimotor networks. No significant change was noted in the memory network, but a slight increase in the salience within-network connectivity was seen in both phenotypes compared to controls. Between-network analysis in posterior cortical atrophy showed evidence of reduced visual-to-language network connectivity, with reduced visual-to-salience network connectivity, compared to controls. An increase in visual-to-default mode network connectivity was noted in posterior cortical atrophy compared to controls. Between-network analysis in logopenic progressive aphasia showed evidence of reduced language-to-visual network connectivity and an increase in language-to-salience network connectivity compared to controls. Findings from the voxel-level and network-level analysis were in line with the Bayesian hierarchical linear model analysis, showing reduced connectivity in the dominant network based on diagnosis and more crosstalk between networks in general compared to controls. The atypical Alzheimer's disease phenotypes were associated with disruptions in connectivity, both within and between brain networks. Phenotype-specific differences in connectivity patterns were noted in the visual network for posterior cortical atrophy and the language network for logopenic progressive aphasia.</p>\",\"PeriodicalId\":9318,\"journal\":{\"name\":\"Brain Communications\",\"volume\":\"5 4\",\"pages\":\"fcad184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331277/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/braincomms/fcad184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcad184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Altered within- and between-network functional connectivity in atypical Alzheimer's disease.
Posterior cortical atrophy and logopenic progressive aphasia are atypical clinical presentations of Alzheimer's disease. Resting-state functional connectivity studies have shown functional network disruptions in both phenotypes, particularly involving the language network in logopenic progressive aphasia and the visual network in posterior cortical atrophy. However, little is known about how connectivity differs both within and between brain networks in these atypical Alzheimer's disease phenotypes. A cohort of 144 patients was recruited by the Neurodegenerative Research Group at Mayo Clinic, Rochester, MN, USA, and underwent structural and resting-state functional MRI. Spatially preprocessed data were analysed to explore the default mode network and the salience, sensorimotor, language, visual and memory networks. The data were analysed at the voxel and network levels. Bayesian hierarchical linear models adjusted for age and sex were used to analyse within- and between-network connectivity. Reduced within-network connectivity was observed in the language network in both phenotypes, with stronger evidence of reductions in logopenic progressive aphasia compared to controls. Only posterior cortical atrophy showed reduced within-network connectivity in the visual network compared to controls. Both phenotypes showed reduced within-network connectivity in the default mode and sensorimotor networks. No significant change was noted in the memory network, but a slight increase in the salience within-network connectivity was seen in both phenotypes compared to controls. Between-network analysis in posterior cortical atrophy showed evidence of reduced visual-to-language network connectivity, with reduced visual-to-salience network connectivity, compared to controls. An increase in visual-to-default mode network connectivity was noted in posterior cortical atrophy compared to controls. Between-network analysis in logopenic progressive aphasia showed evidence of reduced language-to-visual network connectivity and an increase in language-to-salience network connectivity compared to controls. Findings from the voxel-level and network-level analysis were in line with the Bayesian hierarchical linear model analysis, showing reduced connectivity in the dominant network based on diagnosis and more crosstalk between networks in general compared to controls. The atypical Alzheimer's disease phenotypes were associated with disruptions in connectivity, both within and between brain networks. Phenotype-specific differences in connectivity patterns were noted in the visual network for posterior cortical atrophy and the language network for logopenic progressive aphasia.