比较用嗜酸乳杆菌 LA-5、动物双歧杆菌亚种 BB-12 和传统酸奶培养物生产的奶牛和山羊酸奶的氨基酸谱、ACE 抑制活性和有机酸谱。

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Probiotics and Antimicrobial Proteins Pub Date : 2024-10-01 Epub Date: 2023-07-18 DOI:10.1007/s12602-023-10123-0
Murat Emre Terzioğlu, İhsan Bakirci
{"title":"比较用嗜酸乳杆菌 LA-5、动物双歧杆菌亚种 BB-12 和传统酸奶培养物生产的奶牛和山羊酸奶的氨基酸谱、ACE 抑制活性和有机酸谱。","authors":"Murat Emre Terzioğlu, İhsan Bakirci","doi":"10.1007/s12602-023-10123-0","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we aimed to produce a standard, more functional, and nutritious yogurt by using 5 different combinations of cow milk and goat milk and 2 types of starter cultures (classical yogurt culture and commercial probiotic culture). It was determined that the use of different milk types and different starter cultures in yogurt production had a statistically very significant effect (P < 0.01) on all physicochemical, microbiological, and biochemical properties. In addition, the storage period was effective on all parameters examined at varying rates. In the context, the use of goat milk in the experimental yogurt samples caused an increase in the ACE inhibitory activity values and the count of S. thermophilus, while the use of cow milk caused an increase in serum separation and pH values. On the other hand, serum separation, pH values, and ACE inhibitory activity and phenylalanine and leucine levels were found to be higher in the yogurts produced by using ABT-2 probiotic culture. It was observed that an increase in the levels of asparagine, aspartic acid, proline, and serine, as well as lactic acid, orotic acid, and citric acid, is higher in the yogurts produced by using classical yogurt culture. It has been concluded that the combination of goat milk and cow milk at different proportions and the use of probiotic culture together in yogurt production can produce yogurt that is more functional and richer in terms of organic compounds and essential amino acids.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1566-1582"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Amino Acid Profile, ACE Inhibitory Activity, and Organic Acid Profile of Cow and Goat Yogurts Produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and Classical Yogurt Culture.\",\"authors\":\"Murat Emre Terzioğlu, İhsan Bakirci\",\"doi\":\"10.1007/s12602-023-10123-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we aimed to produce a standard, more functional, and nutritious yogurt by using 5 different combinations of cow milk and goat milk and 2 types of starter cultures (classical yogurt culture and commercial probiotic culture). It was determined that the use of different milk types and different starter cultures in yogurt production had a statistically very significant effect (P < 0.01) on all physicochemical, microbiological, and biochemical properties. In addition, the storage period was effective on all parameters examined at varying rates. In the context, the use of goat milk in the experimental yogurt samples caused an increase in the ACE inhibitory activity values and the count of S. thermophilus, while the use of cow milk caused an increase in serum separation and pH values. On the other hand, serum separation, pH values, and ACE inhibitory activity and phenylalanine and leucine levels were found to be higher in the yogurts produced by using ABT-2 probiotic culture. It was observed that an increase in the levels of asparagine, aspartic acid, proline, and serine, as well as lactic acid, orotic acid, and citric acid, is higher in the yogurts produced by using classical yogurt culture. It has been concluded that the combination of goat milk and cow milk at different proportions and the use of probiotic culture together in yogurt production can produce yogurt that is more functional and richer in terms of organic compounds and essential amino acids.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"1566-1582\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-023-10123-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-023-10123-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们的目标是通过使用牛奶和山羊奶的 5 种不同组合以及 2 种启动培养物(传统酸奶培养物和商业益生菌培养物)来生产一种标准的、功能性更强的营养酸奶。结果表明,在酸奶生产中使用不同类型的牛奶和不同的酵母培养物在统计学上有非常显著的影响(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Amino Acid Profile, ACE Inhibitory Activity, and Organic Acid Profile of Cow and Goat Yogurts Produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and Classical Yogurt Culture.

In this study, we aimed to produce a standard, more functional, and nutritious yogurt by using 5 different combinations of cow milk and goat milk and 2 types of starter cultures (classical yogurt culture and commercial probiotic culture). It was determined that the use of different milk types and different starter cultures in yogurt production had a statistically very significant effect (P < 0.01) on all physicochemical, microbiological, and biochemical properties. In addition, the storage period was effective on all parameters examined at varying rates. In the context, the use of goat milk in the experimental yogurt samples caused an increase in the ACE inhibitory activity values and the count of S. thermophilus, while the use of cow milk caused an increase in serum separation and pH values. On the other hand, serum separation, pH values, and ACE inhibitory activity and phenylalanine and leucine levels were found to be higher in the yogurts produced by using ABT-2 probiotic culture. It was observed that an increase in the levels of asparagine, aspartic acid, proline, and serine, as well as lactic acid, orotic acid, and citric acid, is higher in the yogurts produced by using classical yogurt culture. It has been concluded that the combination of goat milk and cow milk at different proportions and the use of probiotic culture together in yogurt production can produce yogurt that is more functional and richer in terms of organic compounds and essential amino acids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
期刊最新文献
The Influence of Protein Secretomes of Enterococcus durans on ex vivo Human Gut Microbiome. Lactobacillus rhamnosus GG Regulates Host IFN-I Through the RIG-I Signalling Pathway to Inhibit Herpes Simplex Virus Type 2 Infection. Lactiplantibacillus plantarum ELF051 Alleviates Antibiotic-Associated Diarrhea by Regulating Intestinal Inflammation and Gut Microbiota. A Two Bacteriocinogenic Ligilactobacillus Strain Association Inhibits Growth, Adhesion, and Invasion of Salmonella in a Simulated Chicken Gut Environment. Gum Arabic/Chitosan Coacervates for Encapsulation and Protection of Lacticaseibacillus rhamnosus in Storage and Gastrointestinal Environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1