Julie A Bradley, Xiaoying Liang, Raymond B Mailhot Vega, Chunbo Liu, Eric D Brooks, Teena Burchianti, Emma Viviers, Roi Dagan, Oluwadamilola T Oladeru, Christopher G Morris, Nancy P Mendenhall
{"title":"乳癌质子治疗后肋骨骨折的发生率。","authors":"Julie A Bradley, Xiaoying Liang, Raymond B Mailhot Vega, Chunbo Liu, Eric D Brooks, Teena Burchianti, Emma Viviers, Roi Dagan, Oluwadamilola T Oladeru, Christopher G Morris, Nancy P Mendenhall","doi":"10.14338/IJPT-22-00034.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To determine the rib fracture rate in a cohort of patients with breast cancer treated with proton therapy.</p><p><strong>Patient and methods: </strong>From a prospective database, we identified 225 patients treated with proton therapy between 2012 and 2020 (223 women; 2 men). Clinical and dosimetric data were extracted, the cumulative incidence method assessed rib fracture rate, and Fine-Gray tests assessed prognostic significance of select variables. In-field rib fracture was defined as a fracture that occurred in a rib located within the 10% isodose line. Out-of-field rib fracture was defined as a fracture occurring in a rib location outside of the 10% isodose line.</p><p><strong>Results: </strong>Of the patients, 74% had left-sided breast cancer; 5%, bilateral; and 21%, right-sided. Dual-energy x-ray absorptiometry scans showed normality in 20%, osteopenia in 34%, and osteoporosis in 6% (test not performed in 40%). Additionally, 57% received an aromatase inhibitor. Target volumes were breast ± internal mammary nodes (IMNs) (16%), breast and comprehensive regional lymphatics (32%), chest wall ± IMNs (1%), and chest wall/comprehensive regional lymphatics (51%). Passive-scattered proton therapy was used for 41% of patients, 58% underwent pencil-beam scanning (PBS), and 1% underwent a combination (passive scattering/PBS), with 85% of patients receiving a boost. Median follow-up was 3.1 years, with 97% having >12-month follow-up. The 3-year cumulative in-field rib fracture incidence was 3.7%. Eight patients developed in-field rib fractures (1 symptomatic, 7 imaging identified) for a 0.4% symptomatic rib fracture rate. Median time from radiation completion to rib fracture identification was 1.8 years (fractures were identified within 2.2 years for 7 of 8 patients). No variables were associated with rib fracture on univariate analysis. Three fractures developed outside the radiation field (0.9% cumulative incidence of out-of-field rib fracture).</p><p><strong>Conclusion: </strong>In this series of patients with breast cancer treated with proton therapy, the 3-year rib fracture rates remain low (in-field 3.7%; symptomatic 0.4%). As in photon therapy, the asymptomatic rate may be underestimated owing to a lack of routine surveillance imaging. However, patients experiencing symptomatic rib fractures after proton therapy for breast cancer are rare.</p>","PeriodicalId":36923,"journal":{"name":"International Journal of Particle Therapy","volume":"9 4","pages":"269-278"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166011/pdf/","citationCount":"2","resultStr":"{\"title\":\"Incidence of Rib Fracture following Treatment with Proton Therapy for Breast Cancer.\",\"authors\":\"Julie A Bradley, Xiaoying Liang, Raymond B Mailhot Vega, Chunbo Liu, Eric D Brooks, Teena Burchianti, Emma Viviers, Roi Dagan, Oluwadamilola T Oladeru, Christopher G Morris, Nancy P Mendenhall\",\"doi\":\"10.14338/IJPT-22-00034.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To determine the rib fracture rate in a cohort of patients with breast cancer treated with proton therapy.</p><p><strong>Patient and methods: </strong>From a prospective database, we identified 225 patients treated with proton therapy between 2012 and 2020 (223 women; 2 men). Clinical and dosimetric data were extracted, the cumulative incidence method assessed rib fracture rate, and Fine-Gray tests assessed prognostic significance of select variables. In-field rib fracture was defined as a fracture that occurred in a rib located within the 10% isodose line. Out-of-field rib fracture was defined as a fracture occurring in a rib location outside of the 10% isodose line.</p><p><strong>Results: </strong>Of the patients, 74% had left-sided breast cancer; 5%, bilateral; and 21%, right-sided. Dual-energy x-ray absorptiometry scans showed normality in 20%, osteopenia in 34%, and osteoporosis in 6% (test not performed in 40%). Additionally, 57% received an aromatase inhibitor. Target volumes were breast ± internal mammary nodes (IMNs) (16%), breast and comprehensive regional lymphatics (32%), chest wall ± IMNs (1%), and chest wall/comprehensive regional lymphatics (51%). Passive-scattered proton therapy was used for 41% of patients, 58% underwent pencil-beam scanning (PBS), and 1% underwent a combination (passive scattering/PBS), with 85% of patients receiving a boost. Median follow-up was 3.1 years, with 97% having >12-month follow-up. The 3-year cumulative in-field rib fracture incidence was 3.7%. Eight patients developed in-field rib fractures (1 symptomatic, 7 imaging identified) for a 0.4% symptomatic rib fracture rate. Median time from radiation completion to rib fracture identification was 1.8 years (fractures were identified within 2.2 years for 7 of 8 patients). No variables were associated with rib fracture on univariate analysis. Three fractures developed outside the radiation field (0.9% cumulative incidence of out-of-field rib fracture).</p><p><strong>Conclusion: </strong>In this series of patients with breast cancer treated with proton therapy, the 3-year rib fracture rates remain low (in-field 3.7%; symptomatic 0.4%). As in photon therapy, the asymptomatic rate may be underestimated owing to a lack of routine surveillance imaging. However, patients experiencing symptomatic rib fractures after proton therapy for breast cancer are rare.</p>\",\"PeriodicalId\":36923,\"journal\":{\"name\":\"International Journal of Particle Therapy\",\"volume\":\"9 4\",\"pages\":\"269-278\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166011/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Particle Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14338/IJPT-22-00034.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Particle Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14338/IJPT-22-00034.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Incidence of Rib Fracture following Treatment with Proton Therapy for Breast Cancer.
Purpose: To determine the rib fracture rate in a cohort of patients with breast cancer treated with proton therapy.
Patient and methods: From a prospective database, we identified 225 patients treated with proton therapy between 2012 and 2020 (223 women; 2 men). Clinical and dosimetric data were extracted, the cumulative incidence method assessed rib fracture rate, and Fine-Gray tests assessed prognostic significance of select variables. In-field rib fracture was defined as a fracture that occurred in a rib located within the 10% isodose line. Out-of-field rib fracture was defined as a fracture occurring in a rib location outside of the 10% isodose line.
Results: Of the patients, 74% had left-sided breast cancer; 5%, bilateral; and 21%, right-sided. Dual-energy x-ray absorptiometry scans showed normality in 20%, osteopenia in 34%, and osteoporosis in 6% (test not performed in 40%). Additionally, 57% received an aromatase inhibitor. Target volumes were breast ± internal mammary nodes (IMNs) (16%), breast and comprehensive regional lymphatics (32%), chest wall ± IMNs (1%), and chest wall/comprehensive regional lymphatics (51%). Passive-scattered proton therapy was used for 41% of patients, 58% underwent pencil-beam scanning (PBS), and 1% underwent a combination (passive scattering/PBS), with 85% of patients receiving a boost. Median follow-up was 3.1 years, with 97% having >12-month follow-up. The 3-year cumulative in-field rib fracture incidence was 3.7%. Eight patients developed in-field rib fractures (1 symptomatic, 7 imaging identified) for a 0.4% symptomatic rib fracture rate. Median time from radiation completion to rib fracture identification was 1.8 years (fractures were identified within 2.2 years for 7 of 8 patients). No variables were associated with rib fracture on univariate analysis. Three fractures developed outside the radiation field (0.9% cumulative incidence of out-of-field rib fracture).
Conclusion: In this series of patients with breast cancer treated with proton therapy, the 3-year rib fracture rates remain low (in-field 3.7%; symptomatic 0.4%). As in photon therapy, the asymptomatic rate may be underestimated owing to a lack of routine surveillance imaging. However, patients experiencing symptomatic rib fractures after proton therapy for breast cancer are rare.