Yuefeng Ma , Xin Xing , Chuantao Cheng , Ranran Kong , Liangzhang Sun , Feng Zhao , Danjie Zhang , Jianzhong Li
{"title":"Hsa-miR-1269a上调通过靶向FAM46C促进食管鳞状细胞癌的恶性进展","authors":"Yuefeng Ma , Xin Xing , Chuantao Cheng , Ranran Kong , Liangzhang Sun , Feng Zhao , Danjie Zhang , Jianzhong Li","doi":"10.1016/j.mrfmmm.2023.111832","DOIUrl":null,"url":null,"abstract":"<div><p>Esophageal squamous cell carcinoma<span> (ESCC) is a malignancy of the alimentary tract resulting in death worldwide. The role and underlying mechanism of hsa-miR-1269a in the progression of ESCC remain unclear. In this study, hsa-miR-1269a was screened by differential expression analysis in TCGA, and its target gene FAM46C was predicted. qRT-PCR was conducted to assay the expression of hsa-miR-1269a and FAM46C in ESCC cells. The results showed that hsa-miR-1269a was upregulated in ESCC tissues and cell lines. Hsa-miR-1269a overexpression stimulated the proliferation, migration, and invasion capacities of ESCC cells, and FAM46C overexpression inhibited these phenotypes. Dual-luciferase assay verified that hsa-miR-1269a could target FAM46C. Next, qRT-PCR and western blot demonstrated that hsa-miR-1269a overexpression downregulated FAM46C. Rescue experiments revealed that hsa-miR-1269a accelerated the malignant progression of ESCC through FAM46C down-regulation. These results indicate that the interaction between hsa-miR-1269a and FAM46C plays a regulatory role in driving the malignant progression of ESCC cells, thereby providing a novel molecular mechanism for understanding ESCC.</span></p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"827 ","pages":"Article 111832"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hsa-miR-1269a up-regulation fosters the malignant progression of esophageal squamous cell carcinoma via targeting FAM46C\",\"authors\":\"Yuefeng Ma , Xin Xing , Chuantao Cheng , Ranran Kong , Liangzhang Sun , Feng Zhao , Danjie Zhang , Jianzhong Li\",\"doi\":\"10.1016/j.mrfmmm.2023.111832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Esophageal squamous cell carcinoma<span> (ESCC) is a malignancy of the alimentary tract resulting in death worldwide. The role and underlying mechanism of hsa-miR-1269a in the progression of ESCC remain unclear. In this study, hsa-miR-1269a was screened by differential expression analysis in TCGA, and its target gene FAM46C was predicted. qRT-PCR was conducted to assay the expression of hsa-miR-1269a and FAM46C in ESCC cells. The results showed that hsa-miR-1269a was upregulated in ESCC tissues and cell lines. Hsa-miR-1269a overexpression stimulated the proliferation, migration, and invasion capacities of ESCC cells, and FAM46C overexpression inhibited these phenotypes. Dual-luciferase assay verified that hsa-miR-1269a could target FAM46C. Next, qRT-PCR and western blot demonstrated that hsa-miR-1269a overexpression downregulated FAM46C. Rescue experiments revealed that hsa-miR-1269a accelerated the malignant progression of ESCC through FAM46C down-regulation. These results indicate that the interaction between hsa-miR-1269a and FAM46C plays a regulatory role in driving the malignant progression of ESCC cells, thereby providing a novel molecular mechanism for understanding ESCC.</span></p></div>\",\"PeriodicalId\":49790,\"journal\":{\"name\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"volume\":\"827 \",\"pages\":\"Article 111832\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0027510723000192\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510723000192","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Hsa-miR-1269a up-regulation fosters the malignant progression of esophageal squamous cell carcinoma via targeting FAM46C
Esophageal squamous cell carcinoma (ESCC) is a malignancy of the alimentary tract resulting in death worldwide. The role and underlying mechanism of hsa-miR-1269a in the progression of ESCC remain unclear. In this study, hsa-miR-1269a was screened by differential expression analysis in TCGA, and its target gene FAM46C was predicted. qRT-PCR was conducted to assay the expression of hsa-miR-1269a and FAM46C in ESCC cells. The results showed that hsa-miR-1269a was upregulated in ESCC tissues and cell lines. Hsa-miR-1269a overexpression stimulated the proliferation, migration, and invasion capacities of ESCC cells, and FAM46C overexpression inhibited these phenotypes. Dual-luciferase assay verified that hsa-miR-1269a could target FAM46C. Next, qRT-PCR and western blot demonstrated that hsa-miR-1269a overexpression downregulated FAM46C. Rescue experiments revealed that hsa-miR-1269a accelerated the malignant progression of ESCC through FAM46C down-regulation. These results indicate that the interaction between hsa-miR-1269a and FAM46C plays a regulatory role in driving the malignant progression of ESCC cells, thereby providing a novel molecular mechanism for understanding ESCC.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.