氯喹抑制离体大鼠主动脉atp敏感钾通道诱导的血管舒张。

IF 1.3 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY General physiology and biophysics Pub Date : 2023-05-01 DOI:10.4149/gpb_2023008
Kyeong-Eon Park, Soo Hee Lee, Sung Il Bae, Yeran Hwang, Seong-Ho Ok, Dawon Kang, Seung Hyun Ahn, Gyujin Sim, Jin Kyeong Park, Ju-Tae Sohn
{"title":"氯喹抑制离体大鼠主动脉atp敏感钾通道诱导的血管舒张。","authors":"Kyeong-Eon Park,&nbsp;Soo Hee Lee,&nbsp;Sung Il Bae,&nbsp;Yeran Hwang,&nbsp;Seong-Ho Ok,&nbsp;Dawon Kang,&nbsp;Seung Hyun Ahn,&nbsp;Gyujin Sim,&nbsp;Jin Kyeong Park,&nbsp;Ju-Tae Sohn","doi":"10.4149/gpb_2023008","DOIUrl":null,"url":null,"abstract":"<p><p>This study examined the effect of chloroquine on vasodilation induced by levcromakalim in isolated endothelium-denuded rat aortas and clarified the underlying mechanisms. We examined the effects of chloroquine, hydroxychloroquine, lipid emulsion, reactive oxygen species (ROS) scavenger N-acetyl-ʟ-cysteine (NAC), and KATP channel inhibitor glibenclamide on levcromakaliminduced vasodilation. The effects of chloroquine, hydroxychloroquine, NAC, and levcromakalim on membrane hyperpolarization and ROS production were examined in aortic vascular smooth muscle cells (VSMCs). Chloroquine inhibited levcromakalim-induced vasodilation more than hydroxychloroquine. NAC attenuated chloroquine-mediated inhibition of levcromakalim-induced vasodilation, while lipid emulsion had no effect. Glibenclamide eliminated levcromakalim-induced vasodilation in aortas pretreated with chloroquine. Chloroquine and hydroxychloroquine inhibited levcromakalim-induced membrane hyperpolarization in VSMCs. Chloroquine and hydroxychloroquine both produced ROS, but chloroquine produced more. NAC inhibited chloroquine-induced ROS production in VSMCs. Collectively, these results suggest that, partially through ROS production, chloroquine inhibits levcromakalim-induced vasodilation. In addition, chloroquine-induced KATP channel-induced vasodilation impairment was not restored by lipid emulsion.</p>","PeriodicalId":12514,"journal":{"name":"General physiology and biophysics","volume":"42 3","pages":"297-306"},"PeriodicalIF":1.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chloroquine inhibits vasodilation induced by ATP-sensitive potassium channels in isolated rat aorta.\",\"authors\":\"Kyeong-Eon Park,&nbsp;Soo Hee Lee,&nbsp;Sung Il Bae,&nbsp;Yeran Hwang,&nbsp;Seong-Ho Ok,&nbsp;Dawon Kang,&nbsp;Seung Hyun Ahn,&nbsp;Gyujin Sim,&nbsp;Jin Kyeong Park,&nbsp;Ju-Tae Sohn\",\"doi\":\"10.4149/gpb_2023008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study examined the effect of chloroquine on vasodilation induced by levcromakalim in isolated endothelium-denuded rat aortas and clarified the underlying mechanisms. We examined the effects of chloroquine, hydroxychloroquine, lipid emulsion, reactive oxygen species (ROS) scavenger N-acetyl-ʟ-cysteine (NAC), and KATP channel inhibitor glibenclamide on levcromakaliminduced vasodilation. The effects of chloroquine, hydroxychloroquine, NAC, and levcromakalim on membrane hyperpolarization and ROS production were examined in aortic vascular smooth muscle cells (VSMCs). Chloroquine inhibited levcromakalim-induced vasodilation more than hydroxychloroquine. NAC attenuated chloroquine-mediated inhibition of levcromakalim-induced vasodilation, while lipid emulsion had no effect. Glibenclamide eliminated levcromakalim-induced vasodilation in aortas pretreated with chloroquine. Chloroquine and hydroxychloroquine inhibited levcromakalim-induced membrane hyperpolarization in VSMCs. Chloroquine and hydroxychloroquine both produced ROS, but chloroquine produced more. NAC inhibited chloroquine-induced ROS production in VSMCs. Collectively, these results suggest that, partially through ROS production, chloroquine inhibits levcromakalim-induced vasodilation. In addition, chloroquine-induced KATP channel-induced vasodilation impairment was not restored by lipid emulsion.</p>\",\"PeriodicalId\":12514,\"journal\":{\"name\":\"General physiology and biophysics\",\"volume\":\"42 3\",\"pages\":\"297-306\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General physiology and biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4149/gpb_2023008\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General physiology and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2023008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了氯喹对左旋克马卡林诱导的大鼠离体内皮剥离主动脉血管扩张的影响,并阐明了其可能的机制。我们研究了氯喹、羟氯喹、脂质乳剂、活性氧(ROS)清除剂n -乙酰基- -半胱氨酸(NAC)和KATP通道抑制剂格列本脲对左旋克罗玛alimi诱导的血管舒张的影响。研究了氯喹、羟氯喹、NAC和左旋莫卡林对主动脉血管平滑肌细胞(VSMCs)膜超极化和ROS生成的影响。氯喹比羟氯喹更能抑制左旋克马卡林诱导的血管舒张。NAC减弱了氯喹介导的左旋克罗马卡林诱导的血管舒张抑制,而脂质乳则没有作用。格列本脲消除氯喹预处理主动脉左旋克马卡林引起的血管舒张。氯喹和羟氯喹抑制左旋克马卡林诱导的VSMCs膜超极化。氯喹和羟氯喹都产生活性氧,但氯喹产生的活性氧更多。NAC抑制氯喹诱导的VSMCs ROS生成。总的来说,这些结果表明,部分通过ROS的产生,氯喹抑制左旋克罗马卡林诱导的血管舒张。此外,氯喹诱导的KATP通道诱导的血管舒张功能损伤不能通过脂质乳恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chloroquine inhibits vasodilation induced by ATP-sensitive potassium channels in isolated rat aorta.

This study examined the effect of chloroquine on vasodilation induced by levcromakalim in isolated endothelium-denuded rat aortas and clarified the underlying mechanisms. We examined the effects of chloroquine, hydroxychloroquine, lipid emulsion, reactive oxygen species (ROS) scavenger N-acetyl-ʟ-cysteine (NAC), and KATP channel inhibitor glibenclamide on levcromakaliminduced vasodilation. The effects of chloroquine, hydroxychloroquine, NAC, and levcromakalim on membrane hyperpolarization and ROS production were examined in aortic vascular smooth muscle cells (VSMCs). Chloroquine inhibited levcromakalim-induced vasodilation more than hydroxychloroquine. NAC attenuated chloroquine-mediated inhibition of levcromakalim-induced vasodilation, while lipid emulsion had no effect. Glibenclamide eliminated levcromakalim-induced vasodilation in aortas pretreated with chloroquine. Chloroquine and hydroxychloroquine inhibited levcromakalim-induced membrane hyperpolarization in VSMCs. Chloroquine and hydroxychloroquine both produced ROS, but chloroquine produced more. NAC inhibited chloroquine-induced ROS production in VSMCs. Collectively, these results suggest that, partially through ROS production, chloroquine inhibits levcromakalim-induced vasodilation. In addition, chloroquine-induced KATP channel-induced vasodilation impairment was not restored by lipid emulsion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General physiology and biophysics
General physiology and biophysics 生物-生化与分子生物学
CiteScore
2.70
自引率
0.00%
发文量
42
审稿时长
6-12 weeks
期刊介绍: General Physiology and Biophysics is devoted to the publication of original research papers concerned with general physiology, biophysics and biochemistry at the cellular and molecular level and is published quarterly by the Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences.
期刊最新文献
Pulmonary alveolar proteinosis: Clinical and morphological overview of a rare disease associated with macrophage dysfunction. Senescence in neural cell lines: comparative insights from SH-SY5Y and ReNcell VM. Senkyunolide A attenuates cerebral ischemia-reperfusion injury by inhibiting NLRP3-mediated ferroptosis in PC12 cells. Silencing Map3k7 suppresses pyroptosis to alleviate bronchopulmonary dysplasia through inhibiting the TGF-β1/Smad3 pathway. Small nucleolar RNA 42 facilitates the progression of hepatocellular carcinoma through PI3K/Akt signaling pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1