Lori A Birder, Amanda S Wolf-Johnston, Irina Zabbarova, Youko Ikeda, Anne M Robertson, Ricardo Cardozo, Fatemeh Azari, Anthony J Kanai, George A Kuchel, Edwin K Jackson
{"title":"次黄嘌呤诱发排尿功能障碍和下尿路重塑的膀胱衰老迹象","authors":"Lori A Birder, Amanda S Wolf-Johnston, Irina Zabbarova, Youko Ikeda, Anne M Robertson, Ricardo Cardozo, Fatemeh Azari, Anthony J Kanai, George A Kuchel, Edwin K Jackson","doi":"10.1093/gerona/glad171","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lower urinary tract syndrome (LUTS) is a group of urinary tract symptoms and signs that can include urinary incontinence. Advancing age is a major risk factor for LUTS; however, the underlying biochemical mechanisms of age-related LUTS remain unknown. Hypoxanthine (HX) is a purine metabolite associated with generation of tissue-damaging reactive oxygen species (ROS). This study tested the hypothesis that exposure of the adult bladder to HX-ROS over time damages key LUT elements, mimicking qualitatively some of the changes observed with aging.</p><p><strong>Methods: </strong>Adult 3-month-old female Fischer 344 rats were treated with vehicle or HX (10 mg/kg/day; 3 weeks) administered in drinking water. Targeted purine metabolomics and molecular approaches were used to assess purine metabolites and biomarkers for oxidative stress and cellular damage. Biomechanical approaches assessed LUT structure and measurements of LUT function (using custom-metabolic cages and cystometry) were also employed.</p><p><strong>Results: </strong>HX exposure increased biomarkers indicative of oxidative stress, pathophysiological ROS production, and depletion of cellular energy with declines in NAD+ levels. Moreover, HX treatment caused bladder remodeling and decreased the intercontraction interval and leak point pressure (surrogate measure to assess stress urinary incontinence).</p><p><strong>Conclusions: </strong>These studies provide evidence that in adult rats chronic exposure to HX causes changes in voiding behavior and in bladder structure resembling alterations observed with aging. These results suggest that increased levels of uro-damaging HX were associated with ROS/oxidative stress-associated cellular damage, which may be central to age-associated development of LUTS, opening up potential opportunities for geroscience-guided interventions.</p>","PeriodicalId":49953,"journal":{"name":"Journals of Gerontology Series A-Biological Sciences and Medical Sciences","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11083631/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hypoxanthine Induces Signs of Bladder Aging With Voiding Dysfunction and Lower Urinary Tract Remodeling.\",\"authors\":\"Lori A Birder, Amanda S Wolf-Johnston, Irina Zabbarova, Youko Ikeda, Anne M Robertson, Ricardo Cardozo, Fatemeh Azari, Anthony J Kanai, George A Kuchel, Edwin K Jackson\",\"doi\":\"10.1093/gerona/glad171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lower urinary tract syndrome (LUTS) is a group of urinary tract symptoms and signs that can include urinary incontinence. Advancing age is a major risk factor for LUTS; however, the underlying biochemical mechanisms of age-related LUTS remain unknown. Hypoxanthine (HX) is a purine metabolite associated with generation of tissue-damaging reactive oxygen species (ROS). This study tested the hypothesis that exposure of the adult bladder to HX-ROS over time damages key LUT elements, mimicking qualitatively some of the changes observed with aging.</p><p><strong>Methods: </strong>Adult 3-month-old female Fischer 344 rats were treated with vehicle or HX (10 mg/kg/day; 3 weeks) administered in drinking water. Targeted purine metabolomics and molecular approaches were used to assess purine metabolites and biomarkers for oxidative stress and cellular damage. Biomechanical approaches assessed LUT structure and measurements of LUT function (using custom-metabolic cages and cystometry) were also employed.</p><p><strong>Results: </strong>HX exposure increased biomarkers indicative of oxidative stress, pathophysiological ROS production, and depletion of cellular energy with declines in NAD+ levels. Moreover, HX treatment caused bladder remodeling and decreased the intercontraction interval and leak point pressure (surrogate measure to assess stress urinary incontinence).</p><p><strong>Conclusions: </strong>These studies provide evidence that in adult rats chronic exposure to HX causes changes in voiding behavior and in bladder structure resembling alterations observed with aging. These results suggest that increased levels of uro-damaging HX were associated with ROS/oxidative stress-associated cellular damage, which may be central to age-associated development of LUTS, opening up potential opportunities for geroscience-guided interventions.</p>\",\"PeriodicalId\":49953,\"journal\":{\"name\":\"Journals of Gerontology Series A-Biological Sciences and Medical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11083631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journals of Gerontology Series A-Biological Sciences and Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/gerona/glad171\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journals of Gerontology Series A-Biological Sciences and Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/gerona/glad171","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Hypoxanthine Induces Signs of Bladder Aging With Voiding Dysfunction and Lower Urinary Tract Remodeling.
Background: Lower urinary tract syndrome (LUTS) is a group of urinary tract symptoms and signs that can include urinary incontinence. Advancing age is a major risk factor for LUTS; however, the underlying biochemical mechanisms of age-related LUTS remain unknown. Hypoxanthine (HX) is a purine metabolite associated with generation of tissue-damaging reactive oxygen species (ROS). This study tested the hypothesis that exposure of the adult bladder to HX-ROS over time damages key LUT elements, mimicking qualitatively some of the changes observed with aging.
Methods: Adult 3-month-old female Fischer 344 rats were treated with vehicle or HX (10 mg/kg/day; 3 weeks) administered in drinking water. Targeted purine metabolomics and molecular approaches were used to assess purine metabolites and biomarkers for oxidative stress and cellular damage. Biomechanical approaches assessed LUT structure and measurements of LUT function (using custom-metabolic cages and cystometry) were also employed.
Results: HX exposure increased biomarkers indicative of oxidative stress, pathophysiological ROS production, and depletion of cellular energy with declines in NAD+ levels. Moreover, HX treatment caused bladder remodeling and decreased the intercontraction interval and leak point pressure (surrogate measure to assess stress urinary incontinence).
Conclusions: These studies provide evidence that in adult rats chronic exposure to HX causes changes in voiding behavior and in bladder structure resembling alterations observed with aging. These results suggest that increased levels of uro-damaging HX were associated with ROS/oxidative stress-associated cellular damage, which may be central to age-associated development of LUTS, opening up potential opportunities for geroscience-guided interventions.
期刊介绍:
Publishes articles representing the full range of medical sciences pertaining to aging. Appropriate areas include, but are not limited to, basic medical science, clinical epidemiology, clinical research, and health services research for professions such as medicine, dentistry, allied health sciences, and nursing. It publishes articles on research pertinent to human biology and disease.