{"title":"对癌症恶病质衰弱状态的思考:骨骼肌萎缩。","authors":"Srusti Dave, Bhoomika M. Patel","doi":"10.1111/fcp.12931","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Cancer cachexia is a debilitating syndrome associated with marked body loss because of muscular atrophy and fat loss. There are several mechanisms contributing to the pathogenesis of cachexia. The presence of the tumor releases cytokines from inflammatory and immune cells, which play a significant role in activating and deactivating certain pathways associated with protein, carbohydrate, and lipid metabolism. This review focuses on various cascades involving an imbalance between protein synthesis and degradation in the skeletal muscles.</p>\n </section>\n \n <section>\n \n <h3> Objectives</h3>\n \n <p>This study aimed to elucidate the mechanisms involved in skeletal muscle wasting phenomenon over the last few years.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This article briefly overviews different pathways responsible for muscle atrophy in cancer cachexia. Studies published up to April 2023 were included. Important findings and study contributions were chosen and compiled using several databases including PubMed, Google Scholar, Science Direct, and ClinicalTrials.gov using relevant keywords.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Cancer cachexia is a complex disease involving multiple factors resulting in atrophy of skeletal muscles. Systemic inflammation, altered energy balance and carbohydrate metabolism, altered lipid and protein metabolism, and adipose tissue browning are some of the major culprits in cancer cachexia. Increased protein degradation and decreased protein synthesis lead to muscle atrophy. Changes in signaling pathway like ubiquitin-proteasome, autophagy, mTOR, AMPK, and IGF-1 also lead to muscle wasting. Physical exercise, nutritional supplementation, steroids, myostatin inhibitors, and interventions targeting on inflammation have been investigated to treat cancer cachexia. Some therapy showed positive results in preclinical and clinical settings, although more research on the efficacy and safety of the treatment should be done.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Muscle atrophy in cancer cachexia is the result of multiple complex mechanisms; as a result, a lot more research has been done to describe the pathophysiology of the disease. Targeted therapy and multimodal interventions can improve clinical outcomes for patients.</p>\n </section>\n </div>","PeriodicalId":12657,"journal":{"name":"Fundamental & Clinical Pharmacology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting\",\"authors\":\"Srusti Dave, Bhoomika M. Patel\",\"doi\":\"10.1111/fcp.12931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Cancer cachexia is a debilitating syndrome associated with marked body loss because of muscular atrophy and fat loss. There are several mechanisms contributing to the pathogenesis of cachexia. The presence of the tumor releases cytokines from inflammatory and immune cells, which play a significant role in activating and deactivating certain pathways associated with protein, carbohydrate, and lipid metabolism. This review focuses on various cascades involving an imbalance between protein synthesis and degradation in the skeletal muscles.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Objectives</h3>\\n \\n <p>This study aimed to elucidate the mechanisms involved in skeletal muscle wasting phenomenon over the last few years.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>This article briefly overviews different pathways responsible for muscle atrophy in cancer cachexia. Studies published up to April 2023 were included. Important findings and study contributions were chosen and compiled using several databases including PubMed, Google Scholar, Science Direct, and ClinicalTrials.gov using relevant keywords.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Cancer cachexia is a complex disease involving multiple factors resulting in atrophy of skeletal muscles. Systemic inflammation, altered energy balance and carbohydrate metabolism, altered lipid and protein metabolism, and adipose tissue browning are some of the major culprits in cancer cachexia. Increased protein degradation and decreased protein synthesis lead to muscle atrophy. Changes in signaling pathway like ubiquitin-proteasome, autophagy, mTOR, AMPK, and IGF-1 also lead to muscle wasting. Physical exercise, nutritional supplementation, steroids, myostatin inhibitors, and interventions targeting on inflammation have been investigated to treat cancer cachexia. Some therapy showed positive results in preclinical and clinical settings, although more research on the efficacy and safety of the treatment should be done.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Muscle atrophy in cancer cachexia is the result of multiple complex mechanisms; as a result, a lot more research has been done to describe the pathophysiology of the disease. Targeted therapy and multimodal interventions can improve clinical outcomes for patients.</p>\\n </section>\\n </div>\",\"PeriodicalId\":12657,\"journal\":{\"name\":\"Fundamental & Clinical Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental & Clinical Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/fcp.12931\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental & Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/fcp.12931","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting
Background
Cancer cachexia is a debilitating syndrome associated with marked body loss because of muscular atrophy and fat loss. There are several mechanisms contributing to the pathogenesis of cachexia. The presence of the tumor releases cytokines from inflammatory and immune cells, which play a significant role in activating and deactivating certain pathways associated with protein, carbohydrate, and lipid metabolism. This review focuses on various cascades involving an imbalance between protein synthesis and degradation in the skeletal muscles.
Objectives
This study aimed to elucidate the mechanisms involved in skeletal muscle wasting phenomenon over the last few years.
Methods
This article briefly overviews different pathways responsible for muscle atrophy in cancer cachexia. Studies published up to April 2023 were included. Important findings and study contributions were chosen and compiled using several databases including PubMed, Google Scholar, Science Direct, and ClinicalTrials.gov using relevant keywords.
Results
Cancer cachexia is a complex disease involving multiple factors resulting in atrophy of skeletal muscles. Systemic inflammation, altered energy balance and carbohydrate metabolism, altered lipid and protein metabolism, and adipose tissue browning are some of the major culprits in cancer cachexia. Increased protein degradation and decreased protein synthesis lead to muscle atrophy. Changes in signaling pathway like ubiquitin-proteasome, autophagy, mTOR, AMPK, and IGF-1 also lead to muscle wasting. Physical exercise, nutritional supplementation, steroids, myostatin inhibitors, and interventions targeting on inflammation have been investigated to treat cancer cachexia. Some therapy showed positive results in preclinical and clinical settings, although more research on the efficacy and safety of the treatment should be done.
Conclusion
Muscle atrophy in cancer cachexia is the result of multiple complex mechanisms; as a result, a lot more research has been done to describe the pathophysiology of the disease. Targeted therapy and multimodal interventions can improve clinical outcomes for patients.
期刊介绍:
Fundamental & Clinical Pharmacology publishes reports describing important and novel developments in fundamental as well as clinical research relevant to drug therapy. Original articles, short communications and reviews are published on all aspects of experimental and clinical pharmacology including:
Antimicrobial, Antiviral Agents
Autonomic Pharmacology
Cardiovascular Pharmacology
Cellular Pharmacology
Clinical Trials
Endocrinopharmacology
Gene Therapy
Inflammation, Immunopharmacology
Lipids, Atherosclerosis
Liver and G-I Tract Pharmacology
Metabolism, Pharmacokinetics
Neuropharmacology
Neuropsychopharmacology
Oncopharmacology
Pediatric Pharmacology Development
Pharmacoeconomics
Pharmacoepidemiology
Pharmacogenetics, Pharmacogenomics
Pharmacovigilance
Pulmonary Pharmacology
Receptors, Signal Transduction
Renal Pharmacology
Thrombosis and Hemostasis
Toxicopharmacology
Clinical research, including clinical studies and clinical trials, may cover disciplines such as pharmacokinetics, pharmacodynamics, pharmacovigilance, pharmacoepidemiology, pharmacogenomics and pharmacoeconomics. Basic research articles from fields such as physiology and molecular biology which contribute to an understanding of drug therapy are also welcomed.