R.A. Eng , C. Fittschen , A. Gebert , P. Hibomvschi , H. Hippler , A.-N. Unterreiner
{"title":"甲苯和对二甲苯在1050 ~ 1400k间与分子氧反应的动力学研究","authors":"R.A. Eng , C. Fittschen , A. Gebert , P. Hibomvschi , H. Hippler , A.-N. Unterreiner","doi":"10.1016/S0082-0784(98)80407-4","DOIUrl":null,"url":null,"abstract":"<div><p>The reaction of toluene with molecular oxygen was studied behind reflected shock waves. Mixtures of 0.5–1 mol% toluene and 5–10% oxygen in argon were investigated in the temperature range between 1050 and 1400 K at total pressures between 2 and 4 bar. We followed the rate of formation of the benzyl radicals by time-resolved UV absorption at 257 nm. The measured concentration-time profiles of the benzyl radicals were numerically reproduced using a simple reaction mechanism. For the initial reaction<span><span><span><math><mrow><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>5</mn></msub><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>5</mn></msub><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><mo>H</mo><msub><mo>O</mo><mn>2</mn></msub><mo>(</mo><mo>R</mo><mn>1</mn><mo>)</mo></mrow></math></span></span></span> a rate coefficient<em>k</em><sub>1</sub> of <span><span><span><math><mrow><msub><mi>k</mi><mn>1</mn></msub><mo>=</mo><mn>3</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>14</mn></mrow></msup><mo>exp</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mo>−</mo><mn>180</mn><mo>kj</mo><mo>/</mo><mo>mol</mo></mrow><mrow><mi>R</mi><mi>T</mi></mrow></mfrac></mrow><mo>]</mo></mrow><mfrac><mrow><msup><mo>cm</mo><mn>3</mn></msup></mrow><mrow><mo>mol</mo><mo>s</mo></mrow></mfrac><mo>(</mo><mn>1050</mn><mo>K</mo><mo><</mo><mi>T</mi><mo><</mo><mn>1400</mn><mo>K</mo><mo>)</mo></mrow></math></span></span></span>was determined with an accuracy of 30%. The rate constant <em>k</em><sub>2</sub>of the subsequent reaction <span><span><span><math><mrow><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>5</mn></msub><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>+</mo><mo>H</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>5</mn></msub><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>H</mo><mn>2</mn></msub><msub><mo>O</mo><mn>2</mn></msub><mo>(</mo><mo>R</mo><mn>2</mn><mo>)</mo></mrow></math></span></span></span>was determined to be.<span><span><span><math><msub><mi>k</mi><mn>2</mn></msub><mo>=</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mn>14</mn></mrow></msup><mo>exp</mo><mo></mo><mrow><mo>[</mo><mrow><mfrac><mrow><mo>−</mo><mn>92</mn><mo>kj</mo><mo>/</mo><mo>mol</mo></mrow><mrow><mi>R</mi><mi>T</mi></mrow></mfrac></mrow><mo>]</mo></mrow><mfrac><mrow><msup><mo>cm</mo><mn>3</mn></msup></mrow><mrow><mo>mol</mo><mo>s</mo></mrow></mfrac><mo>(</mo><mn>1150</mn><mo>K</mo><mo><</mo><mi>T</mi><mo><</mo><mn>1250</mn><mo>K</mo><mo>)</mo></math></span></span></span>The reaction of <em>p</em>-xylene with molecular oxygen was investigated using the same technique. Mixtures of 0.25–0.5 mol % <em>p</em>-xylene and 2.5–10 mol% oxygen in argon were shock-heated to temperatures between 1130 and 1380 K. We followed the formation of <em>p</em>-methyl-benzyl radicals by time-resolved UV absorption at 265 nm. However, we found a very low yield of <em>p</em>-methyl-benzyl radicals, which we attribute to a fast reaction of these radicals with molecular oxygen. From this low yield, we estimated for ratio <em>k<sub>3</sub>/k<sub>4</sub></em> of the rate constants for the reactions<span><span><span><math><mtable><mtr><mtd><mo>p</mo><mo>−</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>4</mn></msub><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mi>p</mi><mo>−</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>4</mn></msub><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><mo>H</mo><msub><mo>O</mo><mn>2</mn></msub><mo>(</mo><mo>R</mo><mn>3</mn><mo>)</mo></mtd></mtr><mtr><mtd><mi>p</mi><mo>−</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>4</mn></msub><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mi>p</mi><mo>−</mo><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>4</mn></msub><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><mo>H</mo><msub><mo>O</mo><mn>2</mn></msub><mo>(</mo><mo>R</mo><mn>4</mn><mo>)</mo></mtd></mtr></mtable></math></span></span></span>an upper limit of 0.01..</p></div>","PeriodicalId":101203,"journal":{"name":"Symposium (International) on Combustion","volume":"27 1","pages":"Pages 211-218"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0082-0784(98)80407-4","citationCount":"21","resultStr":"{\"title\":\"Kinetic investigations of the reactions of toluene and of p-xylene with molecular oxygen between 1050 and 1400 K\",\"authors\":\"R.A. Eng , C. Fittschen , A. Gebert , P. Hibomvschi , H. Hippler , A.-N. Unterreiner\",\"doi\":\"10.1016/S0082-0784(98)80407-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reaction of toluene with molecular oxygen was studied behind reflected shock waves. Mixtures of 0.5–1 mol% toluene and 5–10% oxygen in argon were investigated in the temperature range between 1050 and 1400 K at total pressures between 2 and 4 bar. We followed the rate of formation of the benzyl radicals by time-resolved UV absorption at 257 nm. The measured concentration-time profiles of the benzyl radicals were numerically reproduced using a simple reaction mechanism. For the initial reaction<span><span><span><math><mrow><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>5</mn></msub><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>5</mn></msub><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><mo>H</mo><msub><mo>O</mo><mn>2</mn></msub><mo>(</mo><mo>R</mo><mn>1</mn><mo>)</mo></mrow></math></span></span></span> a rate coefficient<em>k</em><sub>1</sub> of <span><span><span><math><mrow><msub><mi>k</mi><mn>1</mn></msub><mo>=</mo><mn>3</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>14</mn></mrow></msup><mo>exp</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mo>−</mo><mn>180</mn><mo>kj</mo><mo>/</mo><mo>mol</mo></mrow><mrow><mi>R</mi><mi>T</mi></mrow></mfrac></mrow><mo>]</mo></mrow><mfrac><mrow><msup><mo>cm</mo><mn>3</mn></msup></mrow><mrow><mo>mol</mo><mo>s</mo></mrow></mfrac><mo>(</mo><mn>1050</mn><mo>K</mo><mo><</mo><mi>T</mi><mo><</mo><mn>1400</mn><mo>K</mo><mo>)</mo></mrow></math></span></span></span>was determined with an accuracy of 30%. The rate constant <em>k</em><sub>2</sub>of the subsequent reaction <span><span><span><math><mrow><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>5</mn></msub><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>+</mo><mo>H</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>5</mn></msub><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>H</mo><mn>2</mn></msub><msub><mo>O</mo><mn>2</mn></msub><mo>(</mo><mo>R</mo><mn>2</mn><mo>)</mo></mrow></math></span></span></span>was determined to be.<span><span><span><math><msub><mi>k</mi><mn>2</mn></msub><mo>=</mo><mn>3</mn><mo>×</mo><msup><mn>10</mn><mrow><mn>14</mn></mrow></msup><mo>exp</mo><mo></mo><mrow><mo>[</mo><mrow><mfrac><mrow><mo>−</mo><mn>92</mn><mo>kj</mo><mo>/</mo><mo>mol</mo></mrow><mrow><mi>R</mi><mi>T</mi></mrow></mfrac></mrow><mo>]</mo></mrow><mfrac><mrow><msup><mo>cm</mo><mn>3</mn></msup></mrow><mrow><mo>mol</mo><mo>s</mo></mrow></mfrac><mo>(</mo><mn>1150</mn><mo>K</mo><mo><</mo><mi>T</mi><mo><</mo><mn>1250</mn><mo>K</mo><mo>)</mo></math></span></span></span>The reaction of <em>p</em>-xylene with molecular oxygen was investigated using the same technique. Mixtures of 0.25–0.5 mol % <em>p</em>-xylene and 2.5–10 mol% oxygen in argon were shock-heated to temperatures between 1130 and 1380 K. We followed the formation of <em>p</em>-methyl-benzyl radicals by time-resolved UV absorption at 265 nm. However, we found a very low yield of <em>p</em>-methyl-benzyl radicals, which we attribute to a fast reaction of these radicals with molecular oxygen. From this low yield, we estimated for ratio <em>k<sub>3</sub>/k<sub>4</sub></em> of the rate constants for the reactions<span><span><span><math><mtable><mtr><mtd><mo>p</mo><mo>−</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>4</mn></msub><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mi>p</mi><mo>−</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>4</mn></msub><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><mo>H</mo><msub><mo>O</mo><mn>2</mn></msub><mo>(</mo><mo>R</mo><mn>3</mn><mo>)</mo></mtd></mtr><mtr><mtd><mi>p</mi><mo>−</mo><mo>C</mo><msub><mo>H</mo><mn>3</mn></msub><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>4</mn></msub><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><msub><mo>O</mo><mn>2</mn></msub><mo>→</mo><mi>p</mi><mo>−</mo><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><msub><mo>C</mo><mn>6</mn></msub><msub><mo>H</mo><mn>4</mn></msub><mo>C</mo><msub><mo>H</mo><mn>2</mn></msub><mo>+</mo><mo>H</mo><msub><mo>O</mo><mn>2</mn></msub><mo>(</mo><mo>R</mo><mn>4</mn><mo>)</mo></mtd></mtr></mtable></math></span></span></span>an upper limit of 0.01..</p></div>\",\"PeriodicalId\":101203,\"journal\":{\"name\":\"Symposium (International) on Combustion\",\"volume\":\"27 1\",\"pages\":\"Pages 211-218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0082-0784(98)80407-4\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium (International) on Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0082078498804074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium (International) on Combustion","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0082078498804074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetic investigations of the reactions of toluene and of p-xylene with molecular oxygen between 1050 and 1400 K
The reaction of toluene with molecular oxygen was studied behind reflected shock waves. Mixtures of 0.5–1 mol% toluene and 5–10% oxygen in argon were investigated in the temperature range between 1050 and 1400 K at total pressures between 2 and 4 bar. We followed the rate of formation of the benzyl radicals by time-resolved UV absorption at 257 nm. The measured concentration-time profiles of the benzyl radicals were numerically reproduced using a simple reaction mechanism. For the initial reaction a rate coefficientk1 of was determined with an accuracy of 30%. The rate constant k2of the subsequent reaction was determined to be.The reaction of p-xylene with molecular oxygen was investigated using the same technique. Mixtures of 0.25–0.5 mol % p-xylene and 2.5–10 mol% oxygen in argon were shock-heated to temperatures between 1130 and 1380 K. We followed the formation of p-methyl-benzyl radicals by time-resolved UV absorption at 265 nm. However, we found a very low yield of p-methyl-benzyl radicals, which we attribute to a fast reaction of these radicals with molecular oxygen. From this low yield, we estimated for ratio k3/k4 of the rate constants for the reactionsan upper limit of 0.01..