Abnosi Mohammad Hussein, Sargolzaei Javad, Shayeganfar Zahra
{"title":"邻苯二甲酸二-2-乙基己基酯毒性诱导大鼠骨髓间充质干细胞caspase依赖性凋亡可使细胞周期阻滞在G1期。","authors":"Abnosi Mohammad Hussein, Sargolzaei Javad, Shayeganfar Zahra","doi":"10.2174/1574888X18666230106114727","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Di-(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer in polyvinyl chloride products which is widely utilized. Previously we found, DEHP reduced the viability and proliferation ability of bone marrow mesenchymal stem cells (BMSCs).</p><p><strong>Objective: </strong>In the present study, the mechanism of DEHP toxicity was investigated.</p><p><strong>Methods: </strong>Rat BMSCs were cultured up to 3<sup>rd</sup> passage and their viability was determined after treatment with 100 and 500 μM of DEHP for 24 and 48 hours. The levels of sodium, potassium, and calcium as well as induction of apoptosis were investigated. Using flow cytometry, cell cycle analysis was performed and the expression of genes involved in the cell cycle was evaluated using reverse transcriptase-PCR. Data were analyzed and <i>p</i> < 0.05 was taken as the level of significance.</p><p><strong>Results: </strong>Although the viability and electrolyte level of BMSCs were not affected with 100 μM of DEHP, this environmental pollution induced caspase-dependent apoptosis in a concentration-dependent manner. In both of the concentrations, DEHP arrests the cell cycle at the G0/G1 phase, and the expression of Cdk2 and Cdk4 was significantly reduced whereas an over-expression of P53 was observed. However, the expression of the raf1 gene remained unchanged.</p><p><strong>Conclusion: </strong>DEHP induces caspase-dependent apoptosis in BMSCs and arrests the cell cycle due to the reduction of Cdk2 and Cdk4 expression via over-expression of P53.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":"18 8","pages":"1106-1112"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induction of Caspase-dependent Apoptosis in Rat Bone Marrow Mesenchymal Stem Cells Due to Di-2-Ethylhexyl Phthalate Toxicity was Found to Arrest the Cell Cycle at the G1 Stage.\",\"authors\":\"Abnosi Mohammad Hussein, Sargolzaei Javad, Shayeganfar Zahra\",\"doi\":\"10.2174/1574888X18666230106114727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Di-(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer in polyvinyl chloride products which is widely utilized. Previously we found, DEHP reduced the viability and proliferation ability of bone marrow mesenchymal stem cells (BMSCs).</p><p><strong>Objective: </strong>In the present study, the mechanism of DEHP toxicity was investigated.</p><p><strong>Methods: </strong>Rat BMSCs were cultured up to 3<sup>rd</sup> passage and their viability was determined after treatment with 100 and 500 μM of DEHP for 24 and 48 hours. The levels of sodium, potassium, and calcium as well as induction of apoptosis were investigated. Using flow cytometry, cell cycle analysis was performed and the expression of genes involved in the cell cycle was evaluated using reverse transcriptase-PCR. Data were analyzed and <i>p</i> < 0.05 was taken as the level of significance.</p><p><strong>Results: </strong>Although the viability and electrolyte level of BMSCs were not affected with 100 μM of DEHP, this environmental pollution induced caspase-dependent apoptosis in a concentration-dependent manner. In both of the concentrations, DEHP arrests the cell cycle at the G0/G1 phase, and the expression of Cdk2 and Cdk4 was significantly reduced whereas an over-expression of P53 was observed. However, the expression of the raf1 gene remained unchanged.</p><p><strong>Conclusion: </strong>DEHP induces caspase-dependent apoptosis in BMSCs and arrests the cell cycle due to the reduction of Cdk2 and Cdk4 expression via over-expression of P53.</p>\",\"PeriodicalId\":10979,\"journal\":{\"name\":\"Current stem cell research & therapy\",\"volume\":\"18 8\",\"pages\":\"1106-1112\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current stem cell research & therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1574888X18666230106114727\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1574888X18666230106114727","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Induction of Caspase-dependent Apoptosis in Rat Bone Marrow Mesenchymal Stem Cells Due to Di-2-Ethylhexyl Phthalate Toxicity was Found to Arrest the Cell Cycle at the G1 Stage.
Background: Di-(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer in polyvinyl chloride products which is widely utilized. Previously we found, DEHP reduced the viability and proliferation ability of bone marrow mesenchymal stem cells (BMSCs).
Objective: In the present study, the mechanism of DEHP toxicity was investigated.
Methods: Rat BMSCs were cultured up to 3rd passage and their viability was determined after treatment with 100 and 500 μM of DEHP for 24 and 48 hours. The levels of sodium, potassium, and calcium as well as induction of apoptosis were investigated. Using flow cytometry, cell cycle analysis was performed and the expression of genes involved in the cell cycle was evaluated using reverse transcriptase-PCR. Data were analyzed and p < 0.05 was taken as the level of significance.
Results: Although the viability and electrolyte level of BMSCs were not affected with 100 μM of DEHP, this environmental pollution induced caspase-dependent apoptosis in a concentration-dependent manner. In both of the concentrations, DEHP arrests the cell cycle at the G0/G1 phase, and the expression of Cdk2 and Cdk4 was significantly reduced whereas an over-expression of P53 was observed. However, the expression of the raf1 gene remained unchanged.
Conclusion: DEHP induces caspase-dependent apoptosis in BMSCs and arrests the cell cycle due to the reduction of Cdk2 and Cdk4 expression via over-expression of P53.
期刊介绍:
Current Stem Cell Research & Therapy publishes high quality frontier reviews, drug clinical trial studies and guest edited issues on all aspects of basic research on stem cells and their uses in clinical therapy. The journal is essential reading for all researchers and clinicians involved in stem cells research.