Emily Nissen, Alexander Reiner, Simin Liu, Robert B Wallace, Annette M Molinaro, Lucas A Salas, Brock C Christensen, John K Wiencke, Devin C Koestler, Karl T Kelsey
{"title":"使用基于DNA甲基化的方法评估妇女健康倡议中绝经后妇女的免疫细胞图谱。","authors":"Emily Nissen, Alexander Reiner, Simin Liu, Robert B Wallace, Annette M Molinaro, Lucas A Salas, Brock C Christensen, John K Wiencke, Devin C Koestler, Karl T Kelsey","doi":"10.1186/s13148-023-01488-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Over the past decade, DNA methylation (DNAm)-based deconvolution methods that leverage cell-specific DNAm markers of immune cell types have been developed to provide accurate estimates of the proportions of leukocytes in peripheral blood. Immune cell phenotyping using DNAm markers, termed immunomethylomics or methylation cytometry, offers a solution for determining the body's immune cell landscape that does not require fresh blood and is scalable to large sample sizes. Despite significant advances in DNAm-based deconvolution, references at the population level are needed for clinical and research interpretation of these additional immune layers. Here we aim to provide some references for immune populations in a group of multi-ethnic post-menopausal American women.</p><p><strong>Results: </strong>We applied DNAm-based deconvolution to a large sample of post-menopausal women enrolled in the Women's Health Initiative (baseline, N = 58) or the ancillary Long Life Study (WHI-LLS, N = 1237) to determine the reference ranges of 58 immune parameters, including proportions and absolute counts for 19 leukocyte subsets and 20 derived cell ratios. Participants were 50-94 years old at the time of blood draw, and N = 898 (69.3%) self-identified as White. Using linear regression models, we observed significant associations between age at blood draw and absolute counts and proportions of naïve B, memory CD4+, naïve CD4+, naïve CD8+, memory CD8+ memory, neutrophils, and natural killer cells. We also assessed the same immune profiles in a subset of paired longitudinal samples collected 14-18 years apart across N = 52 participants. Our results demonstrate high inter-individual variability in rates of change of leukocyte subsets over this time. And, when conducting paired t tests to test the difference in counts and proportions between the baseline visit and LLS visit, there were significant changes in naïve B, memory CD4+, naïve CD4+, naïve CD8+, memory CD8+ cells and neutrophils, similar to the results seen when analyzing the association with age in the entire cohort.</p><p><strong>Conclusions: </strong>Here, we show that derived cell counts largely reflect the immune profile associated with proportions and that these novel methods replicate the known immune profiles associated with age. Further, we demonstrate the value this methylation cytometry approach can add as a potential application in epidemiological studies.</p>","PeriodicalId":48652,"journal":{"name":"Clinical Epigenetics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141818/pdf/","citationCount":"1","resultStr":"{\"title\":\"Assessment of immune cell profiles among post-menopausal women in the Women's Health Initiative using DNA methylation-based methods.\",\"authors\":\"Emily Nissen, Alexander Reiner, Simin Liu, Robert B Wallace, Annette M Molinaro, Lucas A Salas, Brock C Christensen, John K Wiencke, Devin C Koestler, Karl T Kelsey\",\"doi\":\"10.1186/s13148-023-01488-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Over the past decade, DNA methylation (DNAm)-based deconvolution methods that leverage cell-specific DNAm markers of immune cell types have been developed to provide accurate estimates of the proportions of leukocytes in peripheral blood. Immune cell phenotyping using DNAm markers, termed immunomethylomics or methylation cytometry, offers a solution for determining the body's immune cell landscape that does not require fresh blood and is scalable to large sample sizes. Despite significant advances in DNAm-based deconvolution, references at the population level are needed for clinical and research interpretation of these additional immune layers. Here we aim to provide some references for immune populations in a group of multi-ethnic post-menopausal American women.</p><p><strong>Results: </strong>We applied DNAm-based deconvolution to a large sample of post-menopausal women enrolled in the Women's Health Initiative (baseline, N = 58) or the ancillary Long Life Study (WHI-LLS, N = 1237) to determine the reference ranges of 58 immune parameters, including proportions and absolute counts for 19 leukocyte subsets and 20 derived cell ratios. Participants were 50-94 years old at the time of blood draw, and N = 898 (69.3%) self-identified as White. Using linear regression models, we observed significant associations between age at blood draw and absolute counts and proportions of naïve B, memory CD4+, naïve CD4+, naïve CD8+, memory CD8+ memory, neutrophils, and natural killer cells. We also assessed the same immune profiles in a subset of paired longitudinal samples collected 14-18 years apart across N = 52 participants. Our results demonstrate high inter-individual variability in rates of change of leukocyte subsets over this time. And, when conducting paired t tests to test the difference in counts and proportions between the baseline visit and LLS visit, there were significant changes in naïve B, memory CD4+, naïve CD4+, naïve CD8+, memory CD8+ cells and neutrophils, similar to the results seen when analyzing the association with age in the entire cohort.</p><p><strong>Conclusions: </strong>Here, we show that derived cell counts largely reflect the immune profile associated with proportions and that these novel methods replicate the known immune profiles associated with age. Further, we demonstrate the value this methylation cytometry approach can add as a potential application in epidemiological studies.</p>\",\"PeriodicalId\":48652,\"journal\":{\"name\":\"Clinical Epigenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141818/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epigenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13148-023-01488-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-023-01488-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Assessment of immune cell profiles among post-menopausal women in the Women's Health Initiative using DNA methylation-based methods.
Background: Over the past decade, DNA methylation (DNAm)-based deconvolution methods that leverage cell-specific DNAm markers of immune cell types have been developed to provide accurate estimates of the proportions of leukocytes in peripheral blood. Immune cell phenotyping using DNAm markers, termed immunomethylomics or methylation cytometry, offers a solution for determining the body's immune cell landscape that does not require fresh blood and is scalable to large sample sizes. Despite significant advances in DNAm-based deconvolution, references at the population level are needed for clinical and research interpretation of these additional immune layers. Here we aim to provide some references for immune populations in a group of multi-ethnic post-menopausal American women.
Results: We applied DNAm-based deconvolution to a large sample of post-menopausal women enrolled in the Women's Health Initiative (baseline, N = 58) or the ancillary Long Life Study (WHI-LLS, N = 1237) to determine the reference ranges of 58 immune parameters, including proportions and absolute counts for 19 leukocyte subsets and 20 derived cell ratios. Participants were 50-94 years old at the time of blood draw, and N = 898 (69.3%) self-identified as White. Using linear regression models, we observed significant associations between age at blood draw and absolute counts and proportions of naïve B, memory CD4+, naïve CD4+, naïve CD8+, memory CD8+ memory, neutrophils, and natural killer cells. We also assessed the same immune profiles in a subset of paired longitudinal samples collected 14-18 years apart across N = 52 participants. Our results demonstrate high inter-individual variability in rates of change of leukocyte subsets over this time. And, when conducting paired t tests to test the difference in counts and proportions between the baseline visit and LLS visit, there were significant changes in naïve B, memory CD4+, naïve CD4+, naïve CD8+, memory CD8+ cells and neutrophils, similar to the results seen when analyzing the association with age in the entire cohort.
Conclusions: Here, we show that derived cell counts largely reflect the immune profile associated with proportions and that these novel methods replicate the known immune profiles associated with age. Further, we demonstrate the value this methylation cytometry approach can add as a potential application in epidemiological studies.
Clinical EpigeneticsBiochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
8.90
自引率
5.30%
发文量
150
审稿时长
12 weeks
期刊介绍:
Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.