{"title":"预测中老年社区居民未来脆弱性的机器学习模型:ELSA队列研究。","authors":"Daniel Eduardo da Cunha Leme, Cesar de Oliveira","doi":"10.1093/gerona/glad127","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Machine learning (ML) models can be used to predict future frailty in the community setting. However, outcome variables for epidemiologic data sets such as frailty usually have an imbalance between categories, that is, there are far fewer individuals classified as frail than as nonfrail, adversely affecting the performance of ML models when predicting the syndrome.</p><p><strong>Methods: </strong>A retrospective cohort study with participants (50 years or older) from the English Longitudinal Study of Ageing who were nonfrail at baseline (2008-2009) and reassessed for the frailty phenotype at 4-year follow-up (2012-2013). Social, clinical, and psychosocial baseline predictors were selected to predict frailty at follow-up in ML models (Logistic Regression, Random Forest [RF], Support Vector Machine, Neural Network, K-nearest neighbor, and Naive Bayes classifier).</p><p><strong>Results: </strong>Of all the 4 378 nonfrail participants at baseline, 347 became frail at follow-up. The proposed combined oversampling and undersampling method to adjust imbalanced data improved the performance of the models, and RF had the best performance, with areas under the receiver-operating characteristic curve and the precision-recall curve of 0.92 and 0.97, respectively, specificity of 0.83, sensitivity of 0.88, and balanced accuracy of 85.5% for balanced data. Age, chair-rise test, household wealth, balance problems, and self-rated health were the most important frailty predictors in most of the models trained with balanced data.</p><p><strong>Conclusions: </strong>ML proved useful in identifying individuals who became frail over time, and this result was made possible by balancing the data set. This study highlighted factors that may be useful in the early detection of frailty.</p>","PeriodicalId":49953,"journal":{"name":"Journals of Gerontology Series A-Biological Sciences and Medical Sciences","volume":" ","pages":"2176-2184"},"PeriodicalIF":4.3000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613015/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Models to Predict Future Frailty in Community-Dwelling Middle-Aged and Older Adults: The ELSA Cohort Study.\",\"authors\":\"Daniel Eduardo da Cunha Leme, Cesar de Oliveira\",\"doi\":\"10.1093/gerona/glad127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Machine learning (ML) models can be used to predict future frailty in the community setting. However, outcome variables for epidemiologic data sets such as frailty usually have an imbalance between categories, that is, there are far fewer individuals classified as frail than as nonfrail, adversely affecting the performance of ML models when predicting the syndrome.</p><p><strong>Methods: </strong>A retrospective cohort study with participants (50 years or older) from the English Longitudinal Study of Ageing who were nonfrail at baseline (2008-2009) and reassessed for the frailty phenotype at 4-year follow-up (2012-2013). Social, clinical, and psychosocial baseline predictors were selected to predict frailty at follow-up in ML models (Logistic Regression, Random Forest [RF], Support Vector Machine, Neural Network, K-nearest neighbor, and Naive Bayes classifier).</p><p><strong>Results: </strong>Of all the 4 378 nonfrail participants at baseline, 347 became frail at follow-up. The proposed combined oversampling and undersampling method to adjust imbalanced data improved the performance of the models, and RF had the best performance, with areas under the receiver-operating characteristic curve and the precision-recall curve of 0.92 and 0.97, respectively, specificity of 0.83, sensitivity of 0.88, and balanced accuracy of 85.5% for balanced data. Age, chair-rise test, household wealth, balance problems, and self-rated health were the most important frailty predictors in most of the models trained with balanced data.</p><p><strong>Conclusions: </strong>ML proved useful in identifying individuals who became frail over time, and this result was made possible by balancing the data set. This study highlighted factors that may be useful in the early detection of frailty.</p>\",\"PeriodicalId\":49953,\"journal\":{\"name\":\"Journals of Gerontology Series A-Biological Sciences and Medical Sciences\",\"volume\":\" \",\"pages\":\"2176-2184\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613015/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journals of Gerontology Series A-Biological Sciences and Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/gerona/glad127\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journals of Gerontology Series A-Biological Sciences and Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/gerona/glad127","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Machine Learning Models to Predict Future Frailty in Community-Dwelling Middle-Aged and Older Adults: The ELSA Cohort Study.
Background: Machine learning (ML) models can be used to predict future frailty in the community setting. However, outcome variables for epidemiologic data sets such as frailty usually have an imbalance between categories, that is, there are far fewer individuals classified as frail than as nonfrail, adversely affecting the performance of ML models when predicting the syndrome.
Methods: A retrospective cohort study with participants (50 years or older) from the English Longitudinal Study of Ageing who were nonfrail at baseline (2008-2009) and reassessed for the frailty phenotype at 4-year follow-up (2012-2013). Social, clinical, and psychosocial baseline predictors were selected to predict frailty at follow-up in ML models (Logistic Regression, Random Forest [RF], Support Vector Machine, Neural Network, K-nearest neighbor, and Naive Bayes classifier).
Results: Of all the 4 378 nonfrail participants at baseline, 347 became frail at follow-up. The proposed combined oversampling and undersampling method to adjust imbalanced data improved the performance of the models, and RF had the best performance, with areas under the receiver-operating characteristic curve and the precision-recall curve of 0.92 and 0.97, respectively, specificity of 0.83, sensitivity of 0.88, and balanced accuracy of 85.5% for balanced data. Age, chair-rise test, household wealth, balance problems, and self-rated health were the most important frailty predictors in most of the models trained with balanced data.
Conclusions: ML proved useful in identifying individuals who became frail over time, and this result was made possible by balancing the data set. This study highlighted factors that may be useful in the early detection of frailty.
期刊介绍:
Publishes articles representing the full range of medical sciences pertaining to aging. Appropriate areas include, but are not limited to, basic medical science, clinical epidemiology, clinical research, and health services research for professions such as medicine, dentistry, allied health sciences, and nursing. It publishes articles on research pertinent to human biology and disease.