{"title":"RIPK2的泛素化是由Peli3介导的,并负向调控感染性骨髓炎的发生。","authors":"Lixiang Le, Haojie Shan, Yiwei Lin, Wenyang Xia, Xin Ma, Chaolai Jiang, Zhongmin Shi, Youjia Xu","doi":"10.7883/yoken.JJID.2022.622","DOIUrl":null,"url":null,"abstract":"<p><p>Osteomyelitis is the infection and destruction of the bone. To date, there is no universal protocol for its treatment. Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) has been implicated in osteomyelitis development. However, the detailed mechanism remains unknown. Here, 6-8w wild-type or Pellino E3 Ubiquitin Protein Ligase Family Member 3 (Peli3)-deficient mice were injected with Staphylococcus aureus to induce osteomyelitis. RAW264.7 cells or bone marrow-derived macrophages isolated from mice were treated with lipopolysaccharide (LPS). Knocking down Peli3 in RAW264.7 cells increased the expression of inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) after LPS stimulation. Inflammation was also activated in S. aureus-induced Peli3-deficient mice. Moreover, S. aureus-infected Peli3-deficient mice also displayed more severe symptoms of osteomyelitis than S. aureus-infected wild-type mice. Moreover, Peli3 targets and degrades RIPK2 through K48-linked ubiquitination, and negatively modulates osteomyelitis by degrading RIPK2. Our data further expands the current understanding of RIPK2 in osteomyelitis, and suggests that RIPK2 might serve as a novel therapeutic target for treating osteomyelitis.</p>","PeriodicalId":14608,"journal":{"name":"Japanese journal of infectious diseases","volume":"76 4","pages":"240-245"},"PeriodicalIF":1.3000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ubiquitination of RIPK2 is Mediated by Peli3 and Negatively Regulates the Onset of Infectious Osteomyelitis.\",\"authors\":\"Lixiang Le, Haojie Shan, Yiwei Lin, Wenyang Xia, Xin Ma, Chaolai Jiang, Zhongmin Shi, Youjia Xu\",\"doi\":\"10.7883/yoken.JJID.2022.622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteomyelitis is the infection and destruction of the bone. To date, there is no universal protocol for its treatment. Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) has been implicated in osteomyelitis development. However, the detailed mechanism remains unknown. Here, 6-8w wild-type or Pellino E3 Ubiquitin Protein Ligase Family Member 3 (Peli3)-deficient mice were injected with Staphylococcus aureus to induce osteomyelitis. RAW264.7 cells or bone marrow-derived macrophages isolated from mice were treated with lipopolysaccharide (LPS). Knocking down Peli3 in RAW264.7 cells increased the expression of inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) after LPS stimulation. Inflammation was also activated in S. aureus-induced Peli3-deficient mice. Moreover, S. aureus-infected Peli3-deficient mice also displayed more severe symptoms of osteomyelitis than S. aureus-infected wild-type mice. Moreover, Peli3 targets and degrades RIPK2 through K48-linked ubiquitination, and negatively modulates osteomyelitis by degrading RIPK2. Our data further expands the current understanding of RIPK2 in osteomyelitis, and suggests that RIPK2 might serve as a novel therapeutic target for treating osteomyelitis.</p>\",\"PeriodicalId\":14608,\"journal\":{\"name\":\"Japanese journal of infectious diseases\",\"volume\":\"76 4\",\"pages\":\"240-245\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese journal of infectious diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7883/yoken.JJID.2022.622\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese journal of infectious diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7883/yoken.JJID.2022.622","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
The Ubiquitination of RIPK2 is Mediated by Peli3 and Negatively Regulates the Onset of Infectious Osteomyelitis.
Osteomyelitis is the infection and destruction of the bone. To date, there is no universal protocol for its treatment. Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) has been implicated in osteomyelitis development. However, the detailed mechanism remains unknown. Here, 6-8w wild-type or Pellino E3 Ubiquitin Protein Ligase Family Member 3 (Peli3)-deficient mice were injected with Staphylococcus aureus to induce osteomyelitis. RAW264.7 cells or bone marrow-derived macrophages isolated from mice were treated with lipopolysaccharide (LPS). Knocking down Peli3 in RAW264.7 cells increased the expression of inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) after LPS stimulation. Inflammation was also activated in S. aureus-induced Peli3-deficient mice. Moreover, S. aureus-infected Peli3-deficient mice also displayed more severe symptoms of osteomyelitis than S. aureus-infected wild-type mice. Moreover, Peli3 targets and degrades RIPK2 through K48-linked ubiquitination, and negatively modulates osteomyelitis by degrading RIPK2. Our data further expands the current understanding of RIPK2 in osteomyelitis, and suggests that RIPK2 might serve as a novel therapeutic target for treating osteomyelitis.
期刊介绍:
Japanese Journal of Infectious Diseases (JJID), an official bimonthly publication of National Institute of Infectious Diseases, Japan, publishes papers dealing with basic research on infectious diseases relevant to humans in the fields of bacteriology, virology, mycology, parasitology, medical entomology, vaccinology, and toxinology. Pathology, immunology, biochemistry, and blood safety related to microbial pathogens are among the fields covered. Sections include: original papers, short communications, epidemiological reports, methods, laboratory and epidemiology communications, letters to the editor, and reviews.