Shivani Shah, Elizabeth Slaney, Erik VerHage, Jinghua Chen, Raquel Dias, Bishoy Abdelmalik, Alex Weaver, Josef Neu
{"title":"人工智能在早期检测早产视网膜病变中的应用:文献综述。","authors":"Shivani Shah, Elizabeth Slaney, Erik VerHage, Jinghua Chen, Raquel Dias, Bishoy Abdelmalik, Alex Weaver, Josef Neu","doi":"10.1159/000531441","DOIUrl":null,"url":null,"abstract":"<p><p>Retinopathy of prematurity (ROP) is a potentially blinding disease in premature neonates that requires a skilled workforce for diagnosis, monitoring, and treatment. Artificial intelligence is a valuable tool that clinicians employ to reduce the screening burden on ophthalmologists and neonatologists and improve the detection of treatment-requiring ROP. Neural networks such as convolutional neural networks and deep learning (DL) systems are used to calculate a vascular severity score (VSS), an important component of various risk models. These DL systems have been validated in various studies, which are reviewed here. Most importantly, we discuss a promising study that validated a DL system that could predict the development of ROP despite a lack of clinical evidence of disease on the first retinal examination. Additionally, there is promise in utilizing these systems through telemedicine in more rural and resource-limited areas. This review highlights the value of these DL systems in early ROP diagnosis.</p>","PeriodicalId":18924,"journal":{"name":"Neonatology","volume":" ","pages":"558-565"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Artificial Intelligence in the Early Detection of Retinopathy of Prematurity: Review of the Literature.\",\"authors\":\"Shivani Shah, Elizabeth Slaney, Erik VerHage, Jinghua Chen, Raquel Dias, Bishoy Abdelmalik, Alex Weaver, Josef Neu\",\"doi\":\"10.1159/000531441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinopathy of prematurity (ROP) is a potentially blinding disease in premature neonates that requires a skilled workforce for diagnosis, monitoring, and treatment. Artificial intelligence is a valuable tool that clinicians employ to reduce the screening burden on ophthalmologists and neonatologists and improve the detection of treatment-requiring ROP. Neural networks such as convolutional neural networks and deep learning (DL) systems are used to calculate a vascular severity score (VSS), an important component of various risk models. These DL systems have been validated in various studies, which are reviewed here. Most importantly, we discuss a promising study that validated a DL system that could predict the development of ROP despite a lack of clinical evidence of disease on the first retinal examination. Additionally, there is promise in utilizing these systems through telemedicine in more rural and resource-limited areas. This review highlights the value of these DL systems in early ROP diagnosis.</p>\",\"PeriodicalId\":18924,\"journal\":{\"name\":\"Neonatology\",\"volume\":\" \",\"pages\":\"558-565\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neonatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000531441\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neonatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000531441","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
Application of Artificial Intelligence in the Early Detection of Retinopathy of Prematurity: Review of the Literature.
Retinopathy of prematurity (ROP) is a potentially blinding disease in premature neonates that requires a skilled workforce for diagnosis, monitoring, and treatment. Artificial intelligence is a valuable tool that clinicians employ to reduce the screening burden on ophthalmologists and neonatologists and improve the detection of treatment-requiring ROP. Neural networks such as convolutional neural networks and deep learning (DL) systems are used to calculate a vascular severity score (VSS), an important component of various risk models. These DL systems have been validated in various studies, which are reviewed here. Most importantly, we discuss a promising study that validated a DL system that could predict the development of ROP despite a lack of clinical evidence of disease on the first retinal examination. Additionally, there is promise in utilizing these systems through telemedicine in more rural and resource-limited areas. This review highlights the value of these DL systems in early ROP diagnosis.
期刊介绍:
This highly respected and frequently cited journal is a prime source of information in the area of fetal and neonatal research. Original papers present research on all aspects of neonatology, fetal medicine and developmental biology. These papers encompass both basic science and clinical research including randomized trials, observational studies and epidemiology. Basic science research covers molecular biology, molecular genetics, physiology, biochemistry and pharmacology in fetal and neonatal life. In addition to the classic features the journal accepts papers for the sections Research Briefings and Sources of Neonatal Medicine (historical pieces). Papers reporting results of animal studies should be based upon hypotheses that relate to developmental processes or disorders in the human fetus or neonate.