编辑肥厚性心肌病的发展轨迹。

Mason E Sweat, William T Pu
{"title":"编辑肥厚性心肌病的发展轨迹。","authors":"Mason E Sweat, William T Pu","doi":"10.20517/jca.2023.19","DOIUrl":null,"url":null,"abstract":"The genetic code can be coldly tyrannical when it leads a single nucleotide change to alter an individual’s life trajectory. In hypertrophic cardiomyopathy (HCM), dominant pathogenic variants (PVs) in sarcomere genes cause ventricular muscle thickening, hypercontractility, diastolic dysfunction, cardiac fibrosis, and the risk of life-threatening arrhythmias. With a prevalence as high as 1 in 500 individuals [1] , HCM imposes considerable medical and economic costs. Despite advances in genetic diagnosis and an improved understanding of its molecular pathogenesis, HCM remains incurable and can progress to heart failure, cardiac transplantation, and premature death. Although small molecules that target HCM’s underlying pathogenic mechanisms have begun to enter clinical use [2] , it is likely that cures will require therapies that correct the underlying genetic lesions. The advent of efficient gene editing technologies has opened the door to therapies that correct causative HCM variants. Recent studies published in the February 2023 issue of Nature Medicine by the Olson (Chai et al. [3] ) and Seidman (Reichart et al. [4] ) groups have established proof-of-concept that precise and efficient gene editing can be achieved in postnatal mammalian cardiomyocytes and prevent HCM in experimental disease models. Dominant PVs in","PeriodicalId":75051,"journal":{"name":"The journal of cardiovascular aging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361709/pdf/","citationCount":"0","resultStr":"{\"title\":\"Editing the trajectory of hypertrophic cardiomyopathy.\",\"authors\":\"Mason E Sweat, William T Pu\",\"doi\":\"10.20517/jca.2023.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The genetic code can be coldly tyrannical when it leads a single nucleotide change to alter an individual’s life trajectory. In hypertrophic cardiomyopathy (HCM), dominant pathogenic variants (PVs) in sarcomere genes cause ventricular muscle thickening, hypercontractility, diastolic dysfunction, cardiac fibrosis, and the risk of life-threatening arrhythmias. With a prevalence as high as 1 in 500 individuals [1] , HCM imposes considerable medical and economic costs. Despite advances in genetic diagnosis and an improved understanding of its molecular pathogenesis, HCM remains incurable and can progress to heart failure, cardiac transplantation, and premature death. Although small molecules that target HCM’s underlying pathogenic mechanisms have begun to enter clinical use [2] , it is likely that cures will require therapies that correct the underlying genetic lesions. The advent of efficient gene editing technologies has opened the door to therapies that correct causative HCM variants. Recent studies published in the February 2023 issue of Nature Medicine by the Olson (Chai et al. [3] ) and Seidman (Reichart et al. [4] ) groups have established proof-of-concept that precise and efficient gene editing can be achieved in postnatal mammalian cardiomyocytes and prevent HCM in experimental disease models. Dominant PVs in\",\"PeriodicalId\":75051,\"journal\":{\"name\":\"The journal of cardiovascular aging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361709/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of cardiovascular aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/jca.2023.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of cardiovascular aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jca.2023.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Editing the trajectory of hypertrophic cardiomyopathy.
The genetic code can be coldly tyrannical when it leads a single nucleotide change to alter an individual’s life trajectory. In hypertrophic cardiomyopathy (HCM), dominant pathogenic variants (PVs) in sarcomere genes cause ventricular muscle thickening, hypercontractility, diastolic dysfunction, cardiac fibrosis, and the risk of life-threatening arrhythmias. With a prevalence as high as 1 in 500 individuals [1] , HCM imposes considerable medical and economic costs. Despite advances in genetic diagnosis and an improved understanding of its molecular pathogenesis, HCM remains incurable and can progress to heart failure, cardiac transplantation, and premature death. Although small molecules that target HCM’s underlying pathogenic mechanisms have begun to enter clinical use [2] , it is likely that cures will require therapies that correct the underlying genetic lesions. The advent of efficient gene editing technologies has opened the door to therapies that correct causative HCM variants. Recent studies published in the February 2023 issue of Nature Medicine by the Olson (Chai et al. [3] ) and Seidman (Reichart et al. [4] ) groups have established proof-of-concept that precise and efficient gene editing can be achieved in postnatal mammalian cardiomyocytes and prevent HCM in experimental disease models. Dominant PVs in
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Cardiomyocyte senescence and the potential therapeutic role of senolytics in the heart Dysfunctional mitochondria elicit bioenergetic decline in the aged heart. Targeting vascular senescence in cardiovascular disease with aging. The role of brown adipose tissue in mediating healthful longevity. From vitality to vulnerability: the impact of oxygen on cardiac function and regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1