Luca Ferrari , Donata M.I.R. Cattaneo , Rossella Abbate , Michele Manoni , Matteo Ottoboni , Alice Luciano , Christoph von Holst , Luciano Pinotti
{"title":"硒补充研究进展:从富硒酵母到潜在的富硒昆虫和硒纳米颗粒","authors":"Luca Ferrari , Donata M.I.R. Cattaneo , Rossella Abbate , Michele Manoni , Matteo Ottoboni , Alice Luciano , Christoph von Holst , Luciano Pinotti","doi":"10.1016/j.aninu.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Selenium (Se) is an essential micronutrient that plays an important role in animal and human development and physiological homoeostasis. This review surveys the role of Se in the environment, plants and animal bodies, and discusses data on Se biofortification with different sources of supplementation, from inorganic to organic forms, with special focus on Se-enriched yeast (Se-yeast). Although Se-yeast remains one of the main sources of organic Se, other emerging and innovative sources are reviewed, such as Se-enriched insects and Se-nanoparticles and their potential use in animal nutrition. Se-enriched insects are discussed as an option for supplying Se in organic form to livestock diets. Se-nanoparticles are also discussed, as they represent a more biocompatible and less toxic source of inorganic Se for animal organisms, compared to selenite and selenate. We also provide up to date information on the legal framework in the EU, USA, and Canada of Se that is contained in feed additives. From the scientific evidence available in the literature, it can be concluded that among the inorganic forms, sodium selenite is still one of the main options, whereas Se-yeast remains the primary organic form. However, other potential sources such as Se-enriched insects and Se-nanoparticles are being investigated as they could potentially combine a high bioavailability and reduced Se emissions in the environment.</p></div>","PeriodicalId":62604,"journal":{"name":"Animal Nutrition","volume":"14 ","pages":"Pages 193-203"},"PeriodicalIF":6.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362088/pdf/","citationCount":"3","resultStr":"{\"title\":\"Advances in selenium supplementation: From selenium-enriched yeast to potential selenium-enriched insects, and selenium nanoparticles\",\"authors\":\"Luca Ferrari , Donata M.I.R. Cattaneo , Rossella Abbate , Michele Manoni , Matteo Ottoboni , Alice Luciano , Christoph von Holst , Luciano Pinotti\",\"doi\":\"10.1016/j.aninu.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selenium (Se) is an essential micronutrient that plays an important role in animal and human development and physiological homoeostasis. This review surveys the role of Se in the environment, plants and animal bodies, and discusses data on Se biofortification with different sources of supplementation, from inorganic to organic forms, with special focus on Se-enriched yeast (Se-yeast). Although Se-yeast remains one of the main sources of organic Se, other emerging and innovative sources are reviewed, such as Se-enriched insects and Se-nanoparticles and their potential use in animal nutrition. Se-enriched insects are discussed as an option for supplying Se in organic form to livestock diets. Se-nanoparticles are also discussed, as they represent a more biocompatible and less toxic source of inorganic Se for animal organisms, compared to selenite and selenate. We also provide up to date information on the legal framework in the EU, USA, and Canada of Se that is contained in feed additives. From the scientific evidence available in the literature, it can be concluded that among the inorganic forms, sodium selenite is still one of the main options, whereas Se-yeast remains the primary organic form. However, other potential sources such as Se-enriched insects and Se-nanoparticles are being investigated as they could potentially combine a high bioavailability and reduced Se emissions in the environment.</p></div>\",\"PeriodicalId\":62604,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"14 \",\"pages\":\"Pages 193-203\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362088/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405654523000501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405654523000501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advances in selenium supplementation: From selenium-enriched yeast to potential selenium-enriched insects, and selenium nanoparticles
Selenium (Se) is an essential micronutrient that plays an important role in animal and human development and physiological homoeostasis. This review surveys the role of Se in the environment, plants and animal bodies, and discusses data on Se biofortification with different sources of supplementation, from inorganic to organic forms, with special focus on Se-enriched yeast (Se-yeast). Although Se-yeast remains one of the main sources of organic Se, other emerging and innovative sources are reviewed, such as Se-enriched insects and Se-nanoparticles and their potential use in animal nutrition. Se-enriched insects are discussed as an option for supplying Se in organic form to livestock diets. Se-nanoparticles are also discussed, as they represent a more biocompatible and less toxic source of inorganic Se for animal organisms, compared to selenite and selenate. We also provide up to date information on the legal framework in the EU, USA, and Canada of Se that is contained in feed additives. From the scientific evidence available in the literature, it can be concluded that among the inorganic forms, sodium selenite is still one of the main options, whereas Se-yeast remains the primary organic form. However, other potential sources such as Se-enriched insects and Se-nanoparticles are being investigated as they could potentially combine a high bioavailability and reduced Se emissions in the environment.
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to primarily to the nutrition of farm animals and aquatic species. More applied aspects of animal nutrition, such as the evaluation of novel ingredients, feed additives and feed safety will also be considered but it is expected that such studies will have a strong nutritional focus. Animal Nutrition is indexed in SCIE, PubMed Central, Scopus, DOAJ, etc.