{"title":"国家老年医学和老年医学老化农场C57BL/6N小鼠肺功能的年龄相关变化。","authors":"Koichiro Kawaguchi, Azusa Asai, Ryuta Mikawa, Noboru Ogiso, Masataka Sugimoto","doi":"10.1538/expanim.22-0109","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is an extremely complex biological process, and various models, from unicellular organisms to mammals, have been used in its research. The mouse is the most widely used model for studying human aging and diseases due to its high homology and well-established strategies for genetic manipulation. Despite these advantages, the maximum lifespan of laboratory mice is nearly three years, which makes it time-consuming to obtain animals of the desired age. To avoid this issue and efficiently conduct aging research, the National Center for Geriatrics and Gerontology operates its \"Aging Farm\", a system that supplies aged animals in response to researchers' requests. In the present study, as part of the Aging Farm project, we examined changes in the physiological functions of the lungs and gene expression in lung tissues of Aging Farm animals as they aged. A decline in the physiological function of the lungs was already apparent before 6 months of age, and it continued until at least 1 year of age. On the other hand, gene expression profiling by RNA sequencing showed small changes in the early stages of aging but more pronounced changes at 12 and 24 months of age than at 3 months of age. Age-related lung tissue changes are considered to be involved in the pathogenesis of various chronic respiratory diseases, and the characterization of animals as they age will ensure the quality of the Aging Farm as a resource for aging research.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":"72 2","pages":"173-182"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/ee/expanim-72-173.PMC10202708.pdf","citationCount":"1","resultStr":"{\"title\":\"Age-related changes in lung function in National Center for Geriatrics and Gerontology Aging Farm C57BL/6N mice.\",\"authors\":\"Koichiro Kawaguchi, Azusa Asai, Ryuta Mikawa, Noboru Ogiso, Masataka Sugimoto\",\"doi\":\"10.1538/expanim.22-0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aging is an extremely complex biological process, and various models, from unicellular organisms to mammals, have been used in its research. The mouse is the most widely used model for studying human aging and diseases due to its high homology and well-established strategies for genetic manipulation. Despite these advantages, the maximum lifespan of laboratory mice is nearly three years, which makes it time-consuming to obtain animals of the desired age. To avoid this issue and efficiently conduct aging research, the National Center for Geriatrics and Gerontology operates its \\\"Aging Farm\\\", a system that supplies aged animals in response to researchers' requests. In the present study, as part of the Aging Farm project, we examined changes in the physiological functions of the lungs and gene expression in lung tissues of Aging Farm animals as they aged. A decline in the physiological function of the lungs was already apparent before 6 months of age, and it continued until at least 1 year of age. On the other hand, gene expression profiling by RNA sequencing showed small changes in the early stages of aging but more pronounced changes at 12 and 24 months of age than at 3 months of age. Age-related lung tissue changes are considered to be involved in the pathogenesis of various chronic respiratory diseases, and the characterization of animals as they age will ensure the quality of the Aging Farm as a resource for aging research.</p>\",\"PeriodicalId\":12102,\"journal\":{\"name\":\"Experimental Animals\",\"volume\":\"72 2\",\"pages\":\"173-182\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/ee/expanim-72-173.PMC10202708.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Animals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1538/expanim.22-0109\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1538/expanim.22-0109","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Age-related changes in lung function in National Center for Geriatrics and Gerontology Aging Farm C57BL/6N mice.
Aging is an extremely complex biological process, and various models, from unicellular organisms to mammals, have been used in its research. The mouse is the most widely used model for studying human aging and diseases due to its high homology and well-established strategies for genetic manipulation. Despite these advantages, the maximum lifespan of laboratory mice is nearly three years, which makes it time-consuming to obtain animals of the desired age. To avoid this issue and efficiently conduct aging research, the National Center for Geriatrics and Gerontology operates its "Aging Farm", a system that supplies aged animals in response to researchers' requests. In the present study, as part of the Aging Farm project, we examined changes in the physiological functions of the lungs and gene expression in lung tissues of Aging Farm animals as they aged. A decline in the physiological function of the lungs was already apparent before 6 months of age, and it continued until at least 1 year of age. On the other hand, gene expression profiling by RNA sequencing showed small changes in the early stages of aging but more pronounced changes at 12 and 24 months of age than at 3 months of age. Age-related lung tissue changes are considered to be involved in the pathogenesis of various chronic respiratory diseases, and the characterization of animals as they age will ensure the quality of the Aging Farm as a resource for aging research.
期刊介绍:
The aim of this international journal is to accelerate progress in laboratory animal experimentation and disseminate relevant information in related areas through publication of peer reviewed Original papers and Review articles. The journal covers basic to applied biomedical research centering around use of experimental animals and also covers topics related to experimental animals such as technology, management, and animal welfare.