C E Salinas, O V Patey, C Murillo, M Gonzales, V Espinoza, S Mendoza, R Ruiz, R Vargas, Y Perez, J Montaño, L Toledo-Jaldin, A Badner, J Jimenez, J Peñaranda, C Romero, M Aguilar, L Riveros, I Arana, D A Giussani
{"title":"玻利维亚高海拔地区先兆子痫与母体肺动脉高压的风险。","authors":"C E Salinas, O V Patey, C Murillo, M Gonzales, V Espinoza, S Mendoza, R Ruiz, R Vargas, Y Perez, J Montaño, L Toledo-Jaldin, A Badner, J Jimenez, J Peñaranda, C Romero, M Aguilar, L Riveros, I Arana, D A Giussani","doi":"10.1017/S2040174423000193","DOIUrl":null,"url":null,"abstract":"<p><p>Women with a history of preeclampsia (PE) have a greater risk of pulmonary arterial hypertension (PAH). In turn, pregnancy at high altitude is a risk factor for PE. However, whether women who develop PE during highland pregnancy are at risk of PAH before and after birth has not been investigated. We tested the hypothesis that during highland pregnancy, women who develop PE are at greater risk of PAH compared to women undergoing healthy highland pregnancies. The study was on 140 women in La Paz, Bolivia (3640m). Women undergoing healthy highland pregnancy were controls (C, <i>n</i> = 70; 29 ± 3.3 years old, mean±SD). Women diagnosed with PE were the experimental group (PE, <i>n</i> = 70, 31 ± 2 years old). Conventional (B- and M-mode, PW Doppler) and modern (pulsed wave tissue Doppler imaging) ultrasound were applied for cardiovascular íííassessment. Spirometry determined maternal lung function. Assessments occurred at 35 ± 4 weeks of pregnancy and 6 ± 0.3 weeks after birth. Relative to highland controls, highland PE women had enlarged right ventricular (RV) and right atrial chamber sizes, greater pulmonary artery dimensions and increased estimated RV contractility, pulmonary artery pressure and pulmonary vascular resistance. Highland PE women had lower values for peripheral oxygen saturation, forced expiratory flow and the bronchial permeability index. Differences remained 6 weeks after birth. Therefore, women who develop PE at high altitude are at greater risk of PAH before and long after birth. Hence, women with a history of PE at high altitude have an increased cardiovascular risk that transcends the systemic circulation to include the pulmonary vascular bed.</p>","PeriodicalId":49167,"journal":{"name":"Journal of Developmental Origins of Health and Disease","volume":"14 4","pages":"523-531"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preeclampsia and risk of maternal pulmonary hypertension at high altitude in Bolivia.\",\"authors\":\"C E Salinas, O V Patey, C Murillo, M Gonzales, V Espinoza, S Mendoza, R Ruiz, R Vargas, Y Perez, J Montaño, L Toledo-Jaldin, A Badner, J Jimenez, J Peñaranda, C Romero, M Aguilar, L Riveros, I Arana, D A Giussani\",\"doi\":\"10.1017/S2040174423000193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Women with a history of preeclampsia (PE) have a greater risk of pulmonary arterial hypertension (PAH). In turn, pregnancy at high altitude is a risk factor for PE. However, whether women who develop PE during highland pregnancy are at risk of PAH before and after birth has not been investigated. We tested the hypothesis that during highland pregnancy, women who develop PE are at greater risk of PAH compared to women undergoing healthy highland pregnancies. The study was on 140 women in La Paz, Bolivia (3640m). Women undergoing healthy highland pregnancy were controls (C, <i>n</i> = 70; 29 ± 3.3 years old, mean±SD). Women diagnosed with PE were the experimental group (PE, <i>n</i> = 70, 31 ± 2 years old). Conventional (B- and M-mode, PW Doppler) and modern (pulsed wave tissue Doppler imaging) ultrasound were applied for cardiovascular íííassessment. Spirometry determined maternal lung function. Assessments occurred at 35 ± 4 weeks of pregnancy and 6 ± 0.3 weeks after birth. Relative to highland controls, highland PE women had enlarged right ventricular (RV) and right atrial chamber sizes, greater pulmonary artery dimensions and increased estimated RV contractility, pulmonary artery pressure and pulmonary vascular resistance. Highland PE women had lower values for peripheral oxygen saturation, forced expiratory flow and the bronchial permeability index. Differences remained 6 weeks after birth. Therefore, women who develop PE at high altitude are at greater risk of PAH before and long after birth. Hence, women with a history of PE at high altitude have an increased cardiovascular risk that transcends the systemic circulation to include the pulmonary vascular bed.</p>\",\"PeriodicalId\":49167,\"journal\":{\"name\":\"Journal of Developmental Origins of Health and Disease\",\"volume\":\"14 4\",\"pages\":\"523-531\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Origins of Health and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S2040174423000193\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Origins of Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S2040174423000193","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Preeclampsia and risk of maternal pulmonary hypertension at high altitude in Bolivia.
Women with a history of preeclampsia (PE) have a greater risk of pulmonary arterial hypertension (PAH). In turn, pregnancy at high altitude is a risk factor for PE. However, whether women who develop PE during highland pregnancy are at risk of PAH before and after birth has not been investigated. We tested the hypothesis that during highland pregnancy, women who develop PE are at greater risk of PAH compared to women undergoing healthy highland pregnancies. The study was on 140 women in La Paz, Bolivia (3640m). Women undergoing healthy highland pregnancy were controls (C, n = 70; 29 ± 3.3 years old, mean±SD). Women diagnosed with PE were the experimental group (PE, n = 70, 31 ± 2 years old). Conventional (B- and M-mode, PW Doppler) and modern (pulsed wave tissue Doppler imaging) ultrasound were applied for cardiovascular íííassessment. Spirometry determined maternal lung function. Assessments occurred at 35 ± 4 weeks of pregnancy and 6 ± 0.3 weeks after birth. Relative to highland controls, highland PE women had enlarged right ventricular (RV) and right atrial chamber sizes, greater pulmonary artery dimensions and increased estimated RV contractility, pulmonary artery pressure and pulmonary vascular resistance. Highland PE women had lower values for peripheral oxygen saturation, forced expiratory flow and the bronchial permeability index. Differences remained 6 weeks after birth. Therefore, women who develop PE at high altitude are at greater risk of PAH before and long after birth. Hence, women with a history of PE at high altitude have an increased cardiovascular risk that transcends the systemic circulation to include the pulmonary vascular bed.
期刊介绍:
JDOHaD publishes leading research in the field of Developmental Origins of Health and Disease (DOHaD). The Journal focuses on the environment during early pre-natal and post-natal animal and human development, interactions between environmental and genetic factors, including environmental toxicants, and their influence on health and disease risk throughout the lifespan. JDOHaD publishes work on developmental programming, fetal and neonatal biology and physiology, early life nutrition, especially during the first 1,000 days of life, human ecology and evolution and Gene-Environment Interactions.
JDOHaD also accepts manuscripts that address the social determinants or education of health and disease risk as they relate to the early life period, as well as the economic and health care costs of a poor start to life. Accordingly, JDOHaD is multi-disciplinary, with contributions from basic scientists working in the fields of physiology, biochemistry and nutrition, endocrinology and metabolism, developmental biology, molecular biology/ epigenetics, human biology/ anthropology, and evolutionary developmental biology. Moreover clinicians, nutritionists, epidemiologists, social scientists, economists, public health specialists and policy makers are very welcome to submit manuscripts.
The journal includes original research articles, short communications and reviews, and has regular themed issues, with guest editors; it is also a platform for conference/workshop reports, and for opinion, comment and interaction.