{"title":"人类身高:一个典型的共同复杂特征。","authors":"Mitchell Conery, Struan F A Grant","doi":"10.1080/03014460.2023.2215546","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Like other complex phenotypes, human height reflects a combination of environmental and genetic factors, but is notable for being exceptionally easy to measure. Height has therefore been commonly used to make observations later generalised to other phenotypes though the appropriateness of such generalisations is not always considered.</p><p><strong>Objectives: </strong>We aimed to assess height's suitability as a model for other complex phenotypes and review recent advances in height genetics with regard to their implications for complex phenotypes more broadly.</p><p><strong>Methods: </strong>We conducted a comprehensive literature search in PubMed and Google Scholar for articles relevant to the genetics of height and its comparatibility to other phenotypes.</p><p><strong>Results: </strong>Height is broadly similar to other phenotypes apart from its high heritability and ease of measurment. Recent genome-wide association studies (GWAS) have identified over 12,000 independent signals associated with height and saturated height's common single nucleotide polymorphism based heritability of height within a subset of the genome in individuals similar to European reference populations.</p><p><strong>Conclusions: </strong>Given the similarity of height to other complex traits, the saturation of GWAS's ability to discover additional height-associated variants signals potential limitations to the omnigenic model of complex-phenotype inheritance, indicating the likely future power of polygenic scores and risk scores, and highlights the increasing need for large-scale variant-to-gene mapping efforts.</p>","PeriodicalId":50765,"journal":{"name":"Annals of Human Biology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368389/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human height: a model common complex trait.\",\"authors\":\"Mitchell Conery, Struan F A Grant\",\"doi\":\"10.1080/03014460.2023.2215546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>Like other complex phenotypes, human height reflects a combination of environmental and genetic factors, but is notable for being exceptionally easy to measure. Height has therefore been commonly used to make observations later generalised to other phenotypes though the appropriateness of such generalisations is not always considered.</p><p><strong>Objectives: </strong>We aimed to assess height's suitability as a model for other complex phenotypes and review recent advances in height genetics with regard to their implications for complex phenotypes more broadly.</p><p><strong>Methods: </strong>We conducted a comprehensive literature search in PubMed and Google Scholar for articles relevant to the genetics of height and its comparatibility to other phenotypes.</p><p><strong>Results: </strong>Height is broadly similar to other phenotypes apart from its high heritability and ease of measurment. Recent genome-wide association studies (GWAS) have identified over 12,000 independent signals associated with height and saturated height's common single nucleotide polymorphism based heritability of height within a subset of the genome in individuals similar to European reference populations.</p><p><strong>Conclusions: </strong>Given the similarity of height to other complex traits, the saturation of GWAS's ability to discover additional height-associated variants signals potential limitations to the omnigenic model of complex-phenotype inheritance, indicating the likely future power of polygenic scores and risk scores, and highlights the increasing need for large-scale variant-to-gene mapping efforts.</p>\",\"PeriodicalId\":50765,\"journal\":{\"name\":\"Annals of Human Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368389/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Human Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03014460.2023.2215546\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Human Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03014460.2023.2215546","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
Context: Like other complex phenotypes, human height reflects a combination of environmental and genetic factors, but is notable for being exceptionally easy to measure. Height has therefore been commonly used to make observations later generalised to other phenotypes though the appropriateness of such generalisations is not always considered.
Objectives: We aimed to assess height's suitability as a model for other complex phenotypes and review recent advances in height genetics with regard to their implications for complex phenotypes more broadly.
Methods: We conducted a comprehensive literature search in PubMed and Google Scholar for articles relevant to the genetics of height and its comparatibility to other phenotypes.
Results: Height is broadly similar to other phenotypes apart from its high heritability and ease of measurment. Recent genome-wide association studies (GWAS) have identified over 12,000 independent signals associated with height and saturated height's common single nucleotide polymorphism based heritability of height within a subset of the genome in individuals similar to European reference populations.
Conclusions: Given the similarity of height to other complex traits, the saturation of GWAS's ability to discover additional height-associated variants signals potential limitations to the omnigenic model of complex-phenotype inheritance, indicating the likely future power of polygenic scores and risk scores, and highlights the increasing need for large-scale variant-to-gene mapping efforts.
期刊介绍:
Annals of Human Biology is an international, peer-reviewed journal published six times a year in electronic format. The journal reports investigations on the nature, development and causes of human variation, embracing the disciplines of human growth and development, human genetics, physical and biological anthropology, demography, environmental physiology, ecology, epidemiology and global health and ageing research.