用于肿瘤坏死检测的自适应 SPECT。

Luca Caucci, Matthew A Kupinski, Melanie Freed, Lars R Furenlid, Donald W Wilson, Harrison H Barrett
{"title":"用于肿瘤坏死检测的自适应 SPECT。","authors":"Luca Caucci, Matthew A Kupinski, Melanie Freed, Lars R Furenlid, Donald W Wilson, Harrison H Barrett","doi":"10.1109/NSSMIC.2008.4774505","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we consider a prototype of an adaptive SPECT system, and we use simulation to objectively assess the system's performance with respect to a conventional, non-adaptive SPECT system. Objective performance assessment is investigated for a clinically relevant task: the detection of tumor necrosis at a known location and in a random lumpy background. The iterative maximum-likelihood expectation-maximization (MLEM) algorithm is used to perform image reconstruction. We carried out human observer studies on the reconstructed images and compared the probability of correct detection when the data are generated with the adaptive system as opposed to the non-adaptive system. Task performance is also assessed by using a channelized Hotelling observer, and the area under the receiver operating characteristic curve is the figure of merit for the detection task. Our results show a large performance improvement of adaptive systems versus non-adaptive systems and motivate further research in adaptive medical imaging.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2008 ","pages":"5548-5551"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713043/pdf/nihms715708.pdf","citationCount":"0","resultStr":"{\"title\":\"Adaptive SPECT for Tumor Necrosis Detection.\",\"authors\":\"Luca Caucci, Matthew A Kupinski, Melanie Freed, Lars R Furenlid, Donald W Wilson, Harrison H Barrett\",\"doi\":\"10.1109/NSSMIC.2008.4774505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we consider a prototype of an adaptive SPECT system, and we use simulation to objectively assess the system's performance with respect to a conventional, non-adaptive SPECT system. Objective performance assessment is investigated for a clinically relevant task: the detection of tumor necrosis at a known location and in a random lumpy background. The iterative maximum-likelihood expectation-maximization (MLEM) algorithm is used to perform image reconstruction. We carried out human observer studies on the reconstructed images and compared the probability of correct detection when the data are generated with the adaptive system as opposed to the non-adaptive system. Task performance is also assessed by using a channelized Hotelling observer, and the area under the receiver operating characteristic curve is the figure of merit for the detection task. Our results show a large performance improvement of adaptive systems versus non-adaptive systems and motivate further research in adaptive medical imaging.</p>\",\"PeriodicalId\":73298,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"volume\":\"2008 \",\"pages\":\"5548-5551\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713043/pdf/nihms715708.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2008.4774505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2008.4774505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了自适应 SPECT 系统的原型,并利用模拟来客观评估该系统相对于传统非自适应 SPECT 系统的性能。客观性能评估针对一项临床相关任务进行研究:在已知位置和随机块状背景中检测肿瘤坏死。迭代最大似然期望最大化(MLEM)算法用于执行图像重建。我们对重建后的图像进行了人类观察研究,并比较了使用自适应系统和非自适应系统生成数据时正确检测的概率。我们还使用通道化 Hotelling 观察器对任务性能进行了评估,接收器工作特性曲线下的面积即为检测任务的优劣值。我们的结果表明,与非自适应系统相比,自适应系统的性能有了很大的提高,这也激发了对自适应医学成像的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive SPECT for Tumor Necrosis Detection.

In this paper, we consider a prototype of an adaptive SPECT system, and we use simulation to objectively assess the system's performance with respect to a conventional, non-adaptive SPECT system. Objective performance assessment is investigated for a clinically relevant task: the detection of tumor necrosis at a known location and in a random lumpy background. The iterative maximum-likelihood expectation-maximization (MLEM) algorithm is used to perform image reconstruction. We carried out human observer studies on the reconstructed images and compared the probability of correct detection when the data are generated with the adaptive system as opposed to the non-adaptive system. Task performance is also assessed by using a channelized Hotelling observer, and the area under the receiver operating characteristic curve is the figure of merit for the detection task. Our results show a large performance improvement of adaptive systems versus non-adaptive systems and motivate further research in adaptive medical imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ablation Study of Diffusion Model with Transformer Backbone for Low-count PET Denoising. Point-supervised Brain Tumor Segmentation with Box-prompted Medical Segment Anything Model. Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization. Calibration Methodology of an Edgeless PET System Prototype. Tensor Tomography of Dark Field Scatter using X-ray Interferometry with Bi-prisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1