Mengchang Liu, Defu Xie, Huizhen Zeng, Ning Zhai, Lan Liu, Hong Yan
{"title":"直流电刺激可促进间充质干细胞增殖,维持干细胞的干性。","authors":"Mengchang Liu, Defu Xie, Huizhen Zeng, Ning Zhai, Lan Liu, Hong Yan","doi":"10.2144/btn-2022-0112","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells are frequently utilized in the study of regenerative medicine. Electric fields (EFs) influence many biological processes, such as cell proliferation, migration and differentiation. In the present study, a novel device capable of delivering a direct current of EF stimulation to cells cultured <i>in vitro</i> is described. This bioreactor was customized to simultaneously apply a direct-current EF to six individual cell culture wells, which reduces the amount of experimental time and minimizes cost. In testing the device, adipose-derived mesenchymal stem cells stimulated with an EF in the bioreactor exhibited a greater cell proliferation rate while retaining stemness. The results provide a unique perspective on adipose-derived mesenchymal stem cell proliferation, which is needed for tissue engineering and regenerative medicine.</p>","PeriodicalId":8945,"journal":{"name":"BioTechniques","volume":"74 6","pages":"293-301"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Direct-current electric field stimulation promotes proliferation and maintains stemness of mesenchymal stem cells.\",\"authors\":\"Mengchang Liu, Defu Xie, Huizhen Zeng, Ning Zhai, Lan Liu, Hong Yan\",\"doi\":\"10.2144/btn-2022-0112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mesenchymal stem cells are frequently utilized in the study of regenerative medicine. Electric fields (EFs) influence many biological processes, such as cell proliferation, migration and differentiation. In the present study, a novel device capable of delivering a direct current of EF stimulation to cells cultured <i>in vitro</i> is described. This bioreactor was customized to simultaneously apply a direct-current EF to six individual cell culture wells, which reduces the amount of experimental time and minimizes cost. In testing the device, adipose-derived mesenchymal stem cells stimulated with an EF in the bioreactor exhibited a greater cell proliferation rate while retaining stemness. The results provide a unique perspective on adipose-derived mesenchymal stem cell proliferation, which is needed for tissue engineering and regenerative medicine.</p>\",\"PeriodicalId\":8945,\"journal\":{\"name\":\"BioTechniques\",\"volume\":\"74 6\",\"pages\":\"293-301\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioTechniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2144/btn-2022-0112\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTechniques","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2144/btn-2022-0112","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Direct-current electric field stimulation promotes proliferation and maintains stemness of mesenchymal stem cells.
Mesenchymal stem cells are frequently utilized in the study of regenerative medicine. Electric fields (EFs) influence many biological processes, such as cell proliferation, migration and differentiation. In the present study, a novel device capable of delivering a direct current of EF stimulation to cells cultured in vitro is described. This bioreactor was customized to simultaneously apply a direct-current EF to six individual cell culture wells, which reduces the amount of experimental time and minimizes cost. In testing the device, adipose-derived mesenchymal stem cells stimulated with an EF in the bioreactor exhibited a greater cell proliferation rate while retaining stemness. The results provide a unique perspective on adipose-derived mesenchymal stem cell proliferation, which is needed for tissue engineering and regenerative medicine.
期刊介绍:
BioTechniques is a peer-reviewed, open-access journal dedicated to publishing original laboratory methods, related technical and software tools, and methods-oriented review articles that are of broad interest to professional life scientists, as well as to scientists from other disciplines (e.g., chemistry, physics, computer science, plant and agricultural science and climate science) interested in life science applications for their technologies.
Since 1983, BioTechniques has been a leading peer-reviewed journal for methods-related research. The journal considers:
Reports describing innovative new methods, platforms and software, substantive modifications to existing methods, or innovative applications of existing methods, techniques & tools to new models or scientific questions
Descriptions of technical tools that facilitate the design or performance of experiments or data analysis, such as software and simple laboratory devices
Surveys of technical approaches related to broad fields of research
Reviews discussing advancements in techniques and methods related to broad fields of research
Letters to the Editor and Expert Opinions highlighting interesting observations or cautionary tales concerning experimental design, methodology or analysis.