{"title":"miR-4739通过激活Wnt/β-catenin信号通路促进“驱动基因阴性”非小细胞肺癌的上皮-间质转化和血管生成。","authors":"Wenjian Cen, Qin Yan, Wenpeng Zhou, Minjie Mao, Qitao Huang, Yaobin Lin, Neng Jiang","doi":"10.1007/s13402-023-00848-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>\"Driver gene-negative\" non-small cell lung cancer (NSCLC) currently has no approved targeted drug, due to the lack of common actionable driver molecules. Even though miRNAs play crucial roles in various malignancies, their roles in \"driver gene-negative\" NSCLC keep unclear.</p><p><strong>Methods: </strong>miRNA expression microarrays were utilized to screen miRNAs associated with \"driver gene-negative\" NSCLC malignant progression. Quantitative real-time PCR (RT-qPCR) and in situ hybridization (ISH) were employed to validate the expression of miR-4739, and its correlation with clinicopathological characteristics was analyzed in tumor specimens using univariate and multivariate analyses. The biological functions and underlying mechanisms of miR-4739 were investigated both in vitro and in vivo.</p><p><strong>Results: </strong>our research demonstrated, for the first time, that miR-4739 was substantially increased in \"driver gene-negative\" NSCLC tumor tissues and cell lines, and overexpression of miR-4739 was related to clinical staging, metastasis, and unfavorable outcomes. Functional experiments discovered that miR-4739 dramatically enhanced tumor cell proliferation, migration, and metastasis by promoting the epithelial-to-mesenchymal transition (EMT). Meanwhile, miR-4739 can be transported from cancer cells to the site of vascular epithelial cells through exosomes, consequently facilitating the proliferation and migration of vascular epithelial cells and inducing angiogenesis. Mechanistically, miR-4739 can activate Wnt/β-catenin signaling both in tumor cells and vascular epithelial cells by targeting Wnt/β-catenin signaling antagonists APC2 and DKK3, respectively.</p><p><strong>Conclusion: </strong>Our work identifies a valuable oncogene, miR-4739, that accelerates malignant progression in \"driver gene-negative\" NSCLC and serves as a potential therapeutic target for this group of tumors.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"1821-1835"},"PeriodicalIF":4.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-4739 promotes epithelial-mesenchymal transition and angiogenesis in \\\"driver gene-negative\\\" non-small cell lung cancer via activating the Wnt/β-catenin signaling.\",\"authors\":\"Wenjian Cen, Qin Yan, Wenpeng Zhou, Minjie Mao, Qitao Huang, Yaobin Lin, Neng Jiang\",\"doi\":\"10.1007/s13402-023-00848-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>\\\"Driver gene-negative\\\" non-small cell lung cancer (NSCLC) currently has no approved targeted drug, due to the lack of common actionable driver molecules. Even though miRNAs play crucial roles in various malignancies, their roles in \\\"driver gene-negative\\\" NSCLC keep unclear.</p><p><strong>Methods: </strong>miRNA expression microarrays were utilized to screen miRNAs associated with \\\"driver gene-negative\\\" NSCLC malignant progression. Quantitative real-time PCR (RT-qPCR) and in situ hybridization (ISH) were employed to validate the expression of miR-4739, and its correlation with clinicopathological characteristics was analyzed in tumor specimens using univariate and multivariate analyses. The biological functions and underlying mechanisms of miR-4739 were investigated both in vitro and in vivo.</p><p><strong>Results: </strong>our research demonstrated, for the first time, that miR-4739 was substantially increased in \\\"driver gene-negative\\\" NSCLC tumor tissues and cell lines, and overexpression of miR-4739 was related to clinical staging, metastasis, and unfavorable outcomes. Functional experiments discovered that miR-4739 dramatically enhanced tumor cell proliferation, migration, and metastasis by promoting the epithelial-to-mesenchymal transition (EMT). Meanwhile, miR-4739 can be transported from cancer cells to the site of vascular epithelial cells through exosomes, consequently facilitating the proliferation and migration of vascular epithelial cells and inducing angiogenesis. Mechanistically, miR-4739 can activate Wnt/β-catenin signaling both in tumor cells and vascular epithelial cells by targeting Wnt/β-catenin signaling antagonists APC2 and DKK3, respectively.</p><p><strong>Conclusion: </strong>Our work identifies a valuable oncogene, miR-4739, that accelerates malignant progression in \\\"driver gene-negative\\\" NSCLC and serves as a potential therapeutic target for this group of tumors.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"1821-1835\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-023-00848-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-023-00848-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
miR-4739 promotes epithelial-mesenchymal transition and angiogenesis in "driver gene-negative" non-small cell lung cancer via activating the Wnt/β-catenin signaling.
Purpose: "Driver gene-negative" non-small cell lung cancer (NSCLC) currently has no approved targeted drug, due to the lack of common actionable driver molecules. Even though miRNAs play crucial roles in various malignancies, their roles in "driver gene-negative" NSCLC keep unclear.
Methods: miRNA expression microarrays were utilized to screen miRNAs associated with "driver gene-negative" NSCLC malignant progression. Quantitative real-time PCR (RT-qPCR) and in situ hybridization (ISH) were employed to validate the expression of miR-4739, and its correlation with clinicopathological characteristics was analyzed in tumor specimens using univariate and multivariate analyses. The biological functions and underlying mechanisms of miR-4739 were investigated both in vitro and in vivo.
Results: our research demonstrated, for the first time, that miR-4739 was substantially increased in "driver gene-negative" NSCLC tumor tissues and cell lines, and overexpression of miR-4739 was related to clinical staging, metastasis, and unfavorable outcomes. Functional experiments discovered that miR-4739 dramatically enhanced tumor cell proliferation, migration, and metastasis by promoting the epithelial-to-mesenchymal transition (EMT). Meanwhile, miR-4739 can be transported from cancer cells to the site of vascular epithelial cells through exosomes, consequently facilitating the proliferation and migration of vascular epithelial cells and inducing angiogenesis. Mechanistically, miR-4739 can activate Wnt/β-catenin signaling both in tumor cells and vascular epithelial cells by targeting Wnt/β-catenin signaling antagonists APC2 and DKK3, respectively.
Conclusion: Our work identifies a valuable oncogene, miR-4739, that accelerates malignant progression in "driver gene-negative" NSCLC and serves as a potential therapeutic target for this group of tumors.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.