前中央回对早期词素到音素转换时间过程的贡献

IF 3.6 Q1 LINGUISTICS Neurobiology of Language Pub Date : 2022-02-10 eCollection Date: 2022-01-01 DOI:10.1162/nol_a_00047
Erik Kaestner, Xiaojing Wu, Daniel Friedman, Patricia Dugan, Orrin Devinsky, Chad Carlson, Werner Doyle, Thomas Thesen, Eric Halgren
{"title":"前中央回对早期词素到音素转换时间过程的贡献","authors":"Erik Kaestner, Xiaojing Wu, Daniel Friedman, Patricia Dugan, Orrin Devinsky, Chad Carlson, Werner Doyle, Thomas Thesen, Eric Halgren","doi":"10.1162/nol_a_00047","DOIUrl":null,"url":null,"abstract":"<p><p>As part of silent reading models, visual orthographic information is transduced into an auditory phonological code in a process of grapheme-to-phoneme conversion (GPC). This process is often identified with lateral temporal-parietal regions associated with auditory phoneme encoding. However, the role of articulatory phonemic representations and the precentral gyrus in GPC is ambiguous. Though the precentral gyrus is implicated in many functional MRI studies of reading, it is not clear if the time course of activity in this region is consistent with the precentral gyrus being involved in GPC. We recorded cortical electrophysiology during a bimodal match/mismatch task from eight patients with perisylvian subdural electrodes to examine the time course of neural activity during a task that necessitated GPC. Patients made a match/mismatch decision between a 3-letter string and the following auditory bi-phoneme. We characterized the distribution and timing of evoked broadband high gamma (70-170 Hz) as well as phase-locking between electrodes. The precentral gyrus emerged with a high concentration of broadband high gamma responses to visual and auditory language as well as mismatch effects. The pars opercularis, supramarginal gyrus, and superior temporal gyrus were also involved. The precentral gyrus showed strong phase-locking with the caudal fusiform gyrus during letter-string presentation and with surrounding perisylvian cortex during the bimodal visual-auditory comparison period. These findings hint at a role for precentral cortex in transducing visual into auditory codes during silent reading.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10158576/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Precentral Gyrus Contributions to the Early Time-Course of Grapheme-to-Phoneme Conversion.\",\"authors\":\"Erik Kaestner, Xiaojing Wu, Daniel Friedman, Patricia Dugan, Orrin Devinsky, Chad Carlson, Werner Doyle, Thomas Thesen, Eric Halgren\",\"doi\":\"10.1162/nol_a_00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As part of silent reading models, visual orthographic information is transduced into an auditory phonological code in a process of grapheme-to-phoneme conversion (GPC). This process is often identified with lateral temporal-parietal regions associated with auditory phoneme encoding. However, the role of articulatory phonemic representations and the precentral gyrus in GPC is ambiguous. Though the precentral gyrus is implicated in many functional MRI studies of reading, it is not clear if the time course of activity in this region is consistent with the precentral gyrus being involved in GPC. We recorded cortical electrophysiology during a bimodal match/mismatch task from eight patients with perisylvian subdural electrodes to examine the time course of neural activity during a task that necessitated GPC. Patients made a match/mismatch decision between a 3-letter string and the following auditory bi-phoneme. We characterized the distribution and timing of evoked broadband high gamma (70-170 Hz) as well as phase-locking between electrodes. The precentral gyrus emerged with a high concentration of broadband high gamma responses to visual and auditory language as well as mismatch effects. The pars opercularis, supramarginal gyrus, and superior temporal gyrus were also involved. The precentral gyrus showed strong phase-locking with the caudal fusiform gyrus during letter-string presentation and with surrounding perisylvian cortex during the bimodal visual-auditory comparison period. These findings hint at a role for precentral cortex in transducing visual into auditory codes during silent reading.</p>\",\"PeriodicalId\":34845,\"journal\":{\"name\":\"Neurobiology of Language\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10158576/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/nol_a_00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/nol_a_00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0

摘要

作为无声阅读模型的一部分,视觉正字法信息在词素到音素的转换(GPC)过程中被转换成听觉音素编码。这一过程通常与听觉音素编码相关的外侧颞顶叶区域相联系。然而,发音音位表征和前中央回在 GPC 中的作用并不明确。虽然在许多关于阅读的功能性核磁共振成像研究中都涉及到了前额回,但目前还不清楚该区域的活动时间进程是否与前额回参与 GPC 的时间进程一致。我们用硬膜下电极记录了八名患者在完成双模匹配/错配任务时的皮层电生理学过程,以研究他们在完成需要 GPC 的任务时神经活动的时间进程。患者在 3 个字母的字符串和接下来的听觉双音节之间进行匹配/错配判断。我们对诱发宽带高伽马(70-170 Hz)的分布和时间以及电极间的相位锁定进行了描述。前中央回对视觉和听觉语言的宽带高伽马反应以及错配效应非常集中。眼旁、边际上回和颞上回也参与其中。在字母字符串呈现过程中,前中央回与尾部纺锤形回表现出很强的相位锁定,而在视觉-听觉双模态比较期,前中央回与周围的颞叶周围皮层也表现出很强的相位锁定。这些研究结果表明,在默读过程中,前中央皮层在将视觉代码转换为听觉代码方面发挥了作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Precentral Gyrus Contributions to the Early Time-Course of Grapheme-to-Phoneme Conversion.

As part of silent reading models, visual orthographic information is transduced into an auditory phonological code in a process of grapheme-to-phoneme conversion (GPC). This process is often identified with lateral temporal-parietal regions associated with auditory phoneme encoding. However, the role of articulatory phonemic representations and the precentral gyrus in GPC is ambiguous. Though the precentral gyrus is implicated in many functional MRI studies of reading, it is not clear if the time course of activity in this region is consistent with the precentral gyrus being involved in GPC. We recorded cortical electrophysiology during a bimodal match/mismatch task from eight patients with perisylvian subdural electrodes to examine the time course of neural activity during a task that necessitated GPC. Patients made a match/mismatch decision between a 3-letter string and the following auditory bi-phoneme. We characterized the distribution and timing of evoked broadband high gamma (70-170 Hz) as well as phase-locking between electrodes. The precentral gyrus emerged with a high concentration of broadband high gamma responses to visual and auditory language as well as mismatch effects. The pars opercularis, supramarginal gyrus, and superior temporal gyrus were also involved. The precentral gyrus showed strong phase-locking with the caudal fusiform gyrus during letter-string presentation and with surrounding perisylvian cortex during the bimodal visual-auditory comparison period. These findings hint at a role for precentral cortex in transducing visual into auditory codes during silent reading.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurobiology of Language
Neurobiology of Language Social Sciences-Linguistics and Language
CiteScore
5.90
自引率
6.20%
发文量
32
审稿时长
17 weeks
期刊最新文献
The Domain-Specific Neural Basis of Auditory Statistical Learning in 5-7-Year-Old Children. A Comparison of Denoising Approaches for Spoken Word Production Related Artefacts in Continuous Multiband fMRI Data. Neural Mechanisms of Learning and Consolidation of Morphologically Derived Words in a Novel Language: Evidence From Hebrew Speakers. Cerebellar Atrophy and Language Processing in Chronic Left-Hemisphere Stroke. Cortico-Cerebellar Monitoring of Speech Sequence Production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1