Aveepsa Sengupta, Kunwali Das, Nidhi Jha, Yusuf Akhter, Ashutosh Kumar
{"title":"嗜盐细菌橡胶盐杆菌DNA聚合酶III α亚基的分子进化引导结构适应。","authors":"Aveepsa Sengupta, Kunwali Das, Nidhi Jha, Yusuf Akhter, Ashutosh Kumar","doi":"10.1007/s00792-023-01306-2","DOIUrl":null,"url":null,"abstract":"<p><p>A significant portion of the earth has a salty environment, and the literature on bacterial survival mechanisms in salty environments is limited. During molecular evolution, halophiles increase acidic amino acid residues on their protein surfaces which leads to a negatively charged surface potential that helps them to maintain the protein integrity and protect them from denaturation by competing with salt ions. Through protein family analysis, we have investigated the molecular-level adaptive features of DNA polymerase III's catalytic subunit (alpha) and its structure-function relationship. This study throws light on the novel understanding of halophilic bacterial replication and the molecular basis of salt adaptation. Comparisons of the amino acid contents and electronegativity of halophilic and mesophilic bacterial proteins revealed adaptations that allow halophilic bacteria to thrive in high salt concentrations. A significantly lower isoelectric point of halophilic bacterial proteins indicates the acidic nature. Also, an abundance of disordered regions in halophiles suggests the requirement of the salt ions that play a crucial role in their stable protein folding. Despite having similar topology, mesophilic and halophilic proteins, a set of very prominent molecular modifications was observed in the alpha subunit of halophiles.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"27 2","pages":"20"},"PeriodicalIF":2.6000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular evolution steered structural adaptations in the DNA polymerase III α subunit of halophilic bacterium Salinibacter ruber.\",\"authors\":\"Aveepsa Sengupta, Kunwali Das, Nidhi Jha, Yusuf Akhter, Ashutosh Kumar\",\"doi\":\"10.1007/s00792-023-01306-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A significant portion of the earth has a salty environment, and the literature on bacterial survival mechanisms in salty environments is limited. During molecular evolution, halophiles increase acidic amino acid residues on their protein surfaces which leads to a negatively charged surface potential that helps them to maintain the protein integrity and protect them from denaturation by competing with salt ions. Through protein family analysis, we have investigated the molecular-level adaptive features of DNA polymerase III's catalytic subunit (alpha) and its structure-function relationship. This study throws light on the novel understanding of halophilic bacterial replication and the molecular basis of salt adaptation. Comparisons of the amino acid contents and electronegativity of halophilic and mesophilic bacterial proteins revealed adaptations that allow halophilic bacteria to thrive in high salt concentrations. A significantly lower isoelectric point of halophilic bacterial proteins indicates the acidic nature. Also, an abundance of disordered regions in halophiles suggests the requirement of the salt ions that play a crucial role in their stable protein folding. Despite having similar topology, mesophilic and halophilic proteins, a set of very prominent molecular modifications was observed in the alpha subunit of halophiles.</p>\",\"PeriodicalId\":12302,\"journal\":{\"name\":\"Extremophiles\",\"volume\":\"27 2\",\"pages\":\"20\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extremophiles\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00792-023-01306-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-023-01306-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular evolution steered structural adaptations in the DNA polymerase III α subunit of halophilic bacterium Salinibacter ruber.
A significant portion of the earth has a salty environment, and the literature on bacterial survival mechanisms in salty environments is limited. During molecular evolution, halophiles increase acidic amino acid residues on their protein surfaces which leads to a negatively charged surface potential that helps them to maintain the protein integrity and protect them from denaturation by competing with salt ions. Through protein family analysis, we have investigated the molecular-level adaptive features of DNA polymerase III's catalytic subunit (alpha) and its structure-function relationship. This study throws light on the novel understanding of halophilic bacterial replication and the molecular basis of salt adaptation. Comparisons of the amino acid contents and electronegativity of halophilic and mesophilic bacterial proteins revealed adaptations that allow halophilic bacteria to thrive in high salt concentrations. A significantly lower isoelectric point of halophilic bacterial proteins indicates the acidic nature. Also, an abundance of disordered regions in halophiles suggests the requirement of the salt ions that play a crucial role in their stable protein folding. Despite having similar topology, mesophilic and halophilic proteins, a set of very prominent molecular modifications was observed in the alpha subunit of halophiles.
期刊介绍:
Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.