Bernard Rosner, Camden Bay, Robert J Glynn, Gui-Shuang Ying, Maureen G Maguire, Mei-Ling Ting Lee
{"title":"使用Clayton-Oakes模型的半参数版本对聚类区间截尾二变量生存数据的估计和检验及其应用。","authors":"Bernard Rosner, Camden Bay, Robert J Glynn, Gui-Shuang Ying, Maureen G Maguire, Mei-Ling Ting Lee","doi":"10.1007/s10985-022-09588-y","DOIUrl":null,"url":null,"abstract":"<p><p>The Kaplan-Meier estimator is ubiquitously used to estimate survival probabilities for time-to-event data. It is nonparametric, and thus does not require specification of a survival distribution, but it does assume that the risk set at any time t consists of independent observations. This assumption does not hold for data from paired organ systems such as occur in ophthalmology (eyes) or otolaryngology (ears), or for other types of clustered data. In this article, we estimate marginal survival probabilities in the setting of clustered data, and provide confidence limits for these estimates with intra-cluster correlation accounted for by an interval-censored version of the Clayton-Oakes model. We develop a goodness-of-fit test for general bivariate interval-censored data and apply it to the proposed interval-censored version of the Clayton-Oakes model. We also propose a likelihood ratio test for the comparison of survival distributions between two groups in the setting of clustered data under the assumption of a constant between-group hazard ratio. This methodology can be used both for balanced and unbalanced cluster sizes, and also when the cluster size is informative. We compare our test to the ordinary log rank test and the Lin-Wei (LW) test based on the marginal Cox proportional Hazards model with robust standard errors obtained from the sandwich estimator. Simulation results indicate that the ordinary log rank test over-inflates type I error, while the proposed unconditional likelihood ratio test has appropriate type I error and higher power than the LW test. The method is demonstrated in real examples from the Sorbinil Retinopathy Trial, and the Age-Related Macular Degeneration Study. Raw data from these two trials are provided.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614833/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimation and testing for clustered interval-censored bivariate survival data with application using the semi-parametric version of the Clayton-Oakes model.\",\"authors\":\"Bernard Rosner, Camden Bay, Robert J Glynn, Gui-Shuang Ying, Maureen G Maguire, Mei-Ling Ting Lee\",\"doi\":\"10.1007/s10985-022-09588-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Kaplan-Meier estimator is ubiquitously used to estimate survival probabilities for time-to-event data. It is nonparametric, and thus does not require specification of a survival distribution, but it does assume that the risk set at any time t consists of independent observations. This assumption does not hold for data from paired organ systems such as occur in ophthalmology (eyes) or otolaryngology (ears), or for other types of clustered data. In this article, we estimate marginal survival probabilities in the setting of clustered data, and provide confidence limits for these estimates with intra-cluster correlation accounted for by an interval-censored version of the Clayton-Oakes model. We develop a goodness-of-fit test for general bivariate interval-censored data and apply it to the proposed interval-censored version of the Clayton-Oakes model. We also propose a likelihood ratio test for the comparison of survival distributions between two groups in the setting of clustered data under the assumption of a constant between-group hazard ratio. This methodology can be used both for balanced and unbalanced cluster sizes, and also when the cluster size is informative. We compare our test to the ordinary log rank test and the Lin-Wei (LW) test based on the marginal Cox proportional Hazards model with robust standard errors obtained from the sandwich estimator. Simulation results indicate that the ordinary log rank test over-inflates type I error, while the proposed unconditional likelihood ratio test has appropriate type I error and higher power than the LW test. The method is demonstrated in real examples from the Sorbinil Retinopathy Trial, and the Age-Related Macular Degeneration Study. Raw data from these two trials are provided.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614833/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-022-09588-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09588-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Estimation and testing for clustered interval-censored bivariate survival data with application using the semi-parametric version of the Clayton-Oakes model.
The Kaplan-Meier estimator is ubiquitously used to estimate survival probabilities for time-to-event data. It is nonparametric, and thus does not require specification of a survival distribution, but it does assume that the risk set at any time t consists of independent observations. This assumption does not hold for data from paired organ systems such as occur in ophthalmology (eyes) or otolaryngology (ears), or for other types of clustered data. In this article, we estimate marginal survival probabilities in the setting of clustered data, and provide confidence limits for these estimates with intra-cluster correlation accounted for by an interval-censored version of the Clayton-Oakes model. We develop a goodness-of-fit test for general bivariate interval-censored data and apply it to the proposed interval-censored version of the Clayton-Oakes model. We also propose a likelihood ratio test for the comparison of survival distributions between two groups in the setting of clustered data under the assumption of a constant between-group hazard ratio. This methodology can be used both for balanced and unbalanced cluster sizes, and also when the cluster size is informative. We compare our test to the ordinary log rank test and the Lin-Wei (LW) test based on the marginal Cox proportional Hazards model with robust standard errors obtained from the sandwich estimator. Simulation results indicate that the ordinary log rank test over-inflates type I error, while the proposed unconditional likelihood ratio test has appropriate type I error and higher power than the LW test. The method is demonstrated in real examples from the Sorbinil Retinopathy Trial, and the Age-Related Macular Degeneration Study. Raw data from these two trials are provided.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.