红景天根茎和石榴皮对高脂日粮大鼠代谢过程和生理活性的影响。

IF 2.3 4区 农林科学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Food Technology and Biotechnology Pub Date : 2023-06-01 DOI:10.17113/ftb.61.02.23.7913
Maryna Lieshchova, Viktor Brygadyrenko
{"title":"红景天根茎和石榴皮对高脂日粮大鼠代谢过程和生理活性的影响。","authors":"Maryna Lieshchova,&nbsp;Viktor Brygadyrenko","doi":"10.17113/ftb.61.02.23.7913","DOIUrl":null,"url":null,"abstract":"<p><strong>Research background: </strong><i>Rhodiola rosea</i> (golden root) and <i>Punica granatum</i> (pomegranate), as well as a number of other species of medicinal plants, exert an array of biological effects: adaptogenic, antioxidant and anti-inflammatory. However, there are not enough contemporary studies of their influence on metabolic processes, especially in cases of imbalanced diet. Lipid dysregulation is the main reason for many diseases, including obesity, cardiovascular disorders, non-alcoholic fatty liver disease, hypertension, atherosclerosis and insulin resistance. Recently, a growing amount of evidence has suggested the positive effects of certain natural nutrients on lipid metabolism. The work aims to define the general effect of golden root rhizome and pomegranate peel on physiological activity and metabolic processes in model animals fed with excessively fat diet. This study is relevant for the development of drugs and food additives for treatment and prophylaxis of metabolism disorders.</p><p><strong>Experimental approach: </strong>In a 30-day experiment, we determined the effect of golden root (<i>Rhodiola rosea</i> L.) rhizome and pomegranate (<i>Punica granatum</i> L.) peel on the physiological activity and metabolic processes of 24 laboratory rats consuming a high-fat diet. The physical activity was evaluated according to the mass gain of animals and change in the relative mass of the internal organs, and also the functional conditions of the central nervous system, as demonstrated by the indicators of the locomotor activity and emotional status, determined in the open field test. The influence on the metabolic processes was revealed by biochemical and clinical blood analyses.</p><p><strong>Results and conclusions: </strong>Body mass of rats fed with golden root (<i>R. rosea</i>) reached 125.8 % of the initial body mass; when fed on pomegranate (<i>P. granatum</i>), it reached 123.9 %; and the control group reached only 111.5 % of the initial body mass. The rhizomes of <i>R. rosea</i> in the diet of male rats during the month of the experiment did not cause significant changes in the relative organ mass, and the pomegranate peel fruits led to a decrease in the thymus relative mass, as well as liver and brain. <i>R. rosea</i> rhizomes in the rats' diet led to an increase in the activity of alkaline phosphatase, and also to a decrease in the concentration of urea and urea nitrogen. Diet supplemented with <i>R. rosea</i> also contributed to a strong decrease in plasma concentrations of bilirubin and triglycerides (up to 57.0 % compared with the concentration in the control group). The rhizomes of <i>R. rosea</i> contributed to an unreliable decrease in the atherogenicity index. The pomegranate peel also greatly increased alkaline phosphatase activity and reduced plasma triglyceride concentrations. In addition, in rats consuming the peel of <i>P. granatum</i>, blood glucose concentration decreased. Under the influence of <i>P. granatum</i>, a strong increase in the atherogenic index of plasma (up to 518.6 % of the control) was observed because of a decrease in the concentration of high-density lipoproteins (up to 57.1 %) and a simultaneous elevation of the concentration of low-density lipoproteins (up to 158.3 % of the control). Open field test between groups remained without significant changes.</p><p><strong>Novelty and scientific contribution: </strong>The results indicate that the rhizome of <i>R. rosea</i> and peel of <i>P. granatum</i> are safe as food additives to high-fat diet and did not cause pathological changes and side effects, and at the same time significantly influence the metabolic processes (lipid and carbohydrate). Our study theoretically substantiates the use of <i>R. rosea</i> rhizome and <i>P. granatum</i> peel for the production of nutraceutical and pharmacological products for the correction of metabolic disorders of people and animals. Doses and periods of their application require further research.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339726/pdf/","citationCount":"4","resultStr":"{\"title\":\"Effect of <i>Rhodiola rosea</i> Rhizome and <i>Punica granatum</i> Fruit Peel on the Metabolic Processes and Physiological Activity of Rats Fed with Excessively Fat Diet.\",\"authors\":\"Maryna Lieshchova,&nbsp;Viktor Brygadyrenko\",\"doi\":\"10.17113/ftb.61.02.23.7913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Research background: </strong><i>Rhodiola rosea</i> (golden root) and <i>Punica granatum</i> (pomegranate), as well as a number of other species of medicinal plants, exert an array of biological effects: adaptogenic, antioxidant and anti-inflammatory. However, there are not enough contemporary studies of their influence on metabolic processes, especially in cases of imbalanced diet. Lipid dysregulation is the main reason for many diseases, including obesity, cardiovascular disorders, non-alcoholic fatty liver disease, hypertension, atherosclerosis and insulin resistance. Recently, a growing amount of evidence has suggested the positive effects of certain natural nutrients on lipid metabolism. The work aims to define the general effect of golden root rhizome and pomegranate peel on physiological activity and metabolic processes in model animals fed with excessively fat diet. This study is relevant for the development of drugs and food additives for treatment and prophylaxis of metabolism disorders.</p><p><strong>Experimental approach: </strong>In a 30-day experiment, we determined the effect of golden root (<i>Rhodiola rosea</i> L.) rhizome and pomegranate (<i>Punica granatum</i> L.) peel on the physiological activity and metabolic processes of 24 laboratory rats consuming a high-fat diet. The physical activity was evaluated according to the mass gain of animals and change in the relative mass of the internal organs, and also the functional conditions of the central nervous system, as demonstrated by the indicators of the locomotor activity and emotional status, determined in the open field test. The influence on the metabolic processes was revealed by biochemical and clinical blood analyses.</p><p><strong>Results and conclusions: </strong>Body mass of rats fed with golden root (<i>R. rosea</i>) reached 125.8 % of the initial body mass; when fed on pomegranate (<i>P. granatum</i>), it reached 123.9 %; and the control group reached only 111.5 % of the initial body mass. The rhizomes of <i>R. rosea</i> in the diet of male rats during the month of the experiment did not cause significant changes in the relative organ mass, and the pomegranate peel fruits led to a decrease in the thymus relative mass, as well as liver and brain. <i>R. rosea</i> rhizomes in the rats' diet led to an increase in the activity of alkaline phosphatase, and also to a decrease in the concentration of urea and urea nitrogen. Diet supplemented with <i>R. rosea</i> also contributed to a strong decrease in plasma concentrations of bilirubin and triglycerides (up to 57.0 % compared with the concentration in the control group). The rhizomes of <i>R. rosea</i> contributed to an unreliable decrease in the atherogenicity index. The pomegranate peel also greatly increased alkaline phosphatase activity and reduced plasma triglyceride concentrations. In addition, in rats consuming the peel of <i>P. granatum</i>, blood glucose concentration decreased. Under the influence of <i>P. granatum</i>, a strong increase in the atherogenic index of plasma (up to 518.6 % of the control) was observed because of a decrease in the concentration of high-density lipoproteins (up to 57.1 %) and a simultaneous elevation of the concentration of low-density lipoproteins (up to 158.3 % of the control). Open field test between groups remained without significant changes.</p><p><strong>Novelty and scientific contribution: </strong>The results indicate that the rhizome of <i>R. rosea</i> and peel of <i>P. granatum</i> are safe as food additives to high-fat diet and did not cause pathological changes and side effects, and at the same time significantly influence the metabolic processes (lipid and carbohydrate). Our study theoretically substantiates the use of <i>R. rosea</i> rhizome and <i>P. granatum</i> peel for the production of nutraceutical and pharmacological products for the correction of metabolic disorders of people and animals. Doses and periods of their application require further research.</p>\",\"PeriodicalId\":12400,\"journal\":{\"name\":\"Food Technology and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339726/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Technology and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17113/ftb.61.02.23.7913\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Technology and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17113/ftb.61.02.23.7913","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

研究背景:红景天(Rhodiola rosea,金根)和石榴(Punica granatum,石榴)等多种药用植物具有适应、抗氧化和抗炎等一系列生物学效应。然而,关于它们对代谢过程的影响的当代研究还不够,特别是在饮食不平衡的情况下。脂质失调是许多疾病的主要原因,包括肥胖、心血管疾病、非酒精性脂肪性肝病、高血压、动脉粥样硬化和胰岛素抵抗。最近,越来越多的证据表明,某些天然营养素对脂质代谢有积极作用。本研究旨在探讨金根茎和石榴皮对过度脂肪饲料喂养的模型动物生理活性和代谢过程的总体影响。这项研究对开发治疗和预防代谢紊乱的药物和食品添加剂具有重要意义。实验方法:在30天的实验中,我们测定了金根(Rhodiola rosea L.)根茎和石榴皮(Punica granatum L.)对24只高脂饮食实验大鼠生理活性和代谢过程的影响。根据动物的体重增加和内脏相对质量的变化来评估身体活动,并通过开场试验确定的运动活动和情绪状态指标来评估中枢神经系统的功能状况。通过生化和临床血液分析揭示了对代谢过程的影响。结果与结论:金根饲喂大鼠体质量达到初始体质量的125.8%;以石榴(P. granatum)为食,达123.9%;而对照组只达到了初始体重的115%。在实验一个月内,雄性大鼠饮食中的玫瑰根茎没有引起相对器官质量的显著变化,石榴皮果实导致胸腺相对质量下降,肝脏和大脑也减少。饲粮中添加玫瑰根茎可提高大鼠碱性磷酸酶活性,降低尿素和尿素氮浓度。饲粮中添加玫瑰红也显著降低了血浆中胆红素和甘油三酯的浓度(与对照组相比降低了57.0%)。玫瑰红的根茎有助于降低动脉粥样硬化指数。石榴皮还大大提高了碱性磷酸酶活性,降低了血浆甘油三酯浓度。此外,食用石榴皮的大鼠血糖浓度降低。在P. granatum的影响下,由于高密度脂蛋白浓度降低(高达57.1%)和低密度脂蛋白浓度同时升高(高达对照组的158.3%),观察到血浆的动脉粥样硬化指数大幅增加(高达对照组的518.6%)。各组间野外试验无明显变化。新颖性和科学贡献:结果表明,玫瑰根茎和石榴皮作为高脂肪饮食的食品添加剂是安全的,不会引起病理变化和副作用,同时显著影响代谢过程(脂质和碳水化合物)。我们的研究从理论上证实了玫瑰根茎和石榴皮用于生产营养保健品和药理学产品,以纠正人和动物的代谢紊乱。它们的使用剂量和时间需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Rhodiola rosea Rhizome and Punica granatum Fruit Peel on the Metabolic Processes and Physiological Activity of Rats Fed with Excessively Fat Diet.

Research background: Rhodiola rosea (golden root) and Punica granatum (pomegranate), as well as a number of other species of medicinal plants, exert an array of biological effects: adaptogenic, antioxidant and anti-inflammatory. However, there are not enough contemporary studies of their influence on metabolic processes, especially in cases of imbalanced diet. Lipid dysregulation is the main reason for many diseases, including obesity, cardiovascular disorders, non-alcoholic fatty liver disease, hypertension, atherosclerosis and insulin resistance. Recently, a growing amount of evidence has suggested the positive effects of certain natural nutrients on lipid metabolism. The work aims to define the general effect of golden root rhizome and pomegranate peel on physiological activity and metabolic processes in model animals fed with excessively fat diet. This study is relevant for the development of drugs and food additives for treatment and prophylaxis of metabolism disorders.

Experimental approach: In a 30-day experiment, we determined the effect of golden root (Rhodiola rosea L.) rhizome and pomegranate (Punica granatum L.) peel on the physiological activity and metabolic processes of 24 laboratory rats consuming a high-fat diet. The physical activity was evaluated according to the mass gain of animals and change in the relative mass of the internal organs, and also the functional conditions of the central nervous system, as demonstrated by the indicators of the locomotor activity and emotional status, determined in the open field test. The influence on the metabolic processes was revealed by biochemical and clinical blood analyses.

Results and conclusions: Body mass of rats fed with golden root (R. rosea) reached 125.8 % of the initial body mass; when fed on pomegranate (P. granatum), it reached 123.9 %; and the control group reached only 111.5 % of the initial body mass. The rhizomes of R. rosea in the diet of male rats during the month of the experiment did not cause significant changes in the relative organ mass, and the pomegranate peel fruits led to a decrease in the thymus relative mass, as well as liver and brain. R. rosea rhizomes in the rats' diet led to an increase in the activity of alkaline phosphatase, and also to a decrease in the concentration of urea and urea nitrogen. Diet supplemented with R. rosea also contributed to a strong decrease in plasma concentrations of bilirubin and triglycerides (up to 57.0 % compared with the concentration in the control group). The rhizomes of R. rosea contributed to an unreliable decrease in the atherogenicity index. The pomegranate peel also greatly increased alkaline phosphatase activity and reduced plasma triglyceride concentrations. In addition, in rats consuming the peel of P. granatum, blood glucose concentration decreased. Under the influence of P. granatum, a strong increase in the atherogenic index of plasma (up to 518.6 % of the control) was observed because of a decrease in the concentration of high-density lipoproteins (up to 57.1 %) and a simultaneous elevation of the concentration of low-density lipoproteins (up to 158.3 % of the control). Open field test between groups remained without significant changes.

Novelty and scientific contribution: The results indicate that the rhizome of R. rosea and peel of P. granatum are safe as food additives to high-fat diet and did not cause pathological changes and side effects, and at the same time significantly influence the metabolic processes (lipid and carbohydrate). Our study theoretically substantiates the use of R. rosea rhizome and P. granatum peel for the production of nutraceutical and pharmacological products for the correction of metabolic disorders of people and animals. Doses and periods of their application require further research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Technology and Biotechnology
Food Technology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
3.70
自引率
0.00%
发文量
33
审稿时长
12 months
期刊介绍: Food Technology and Biotechnology (FTB) is a diamond open access, peer-reviewed international quarterly scientific journal that publishes papers covering a wide range of topics, including molecular biology, genetic engineering, biochemistry, microbiology, biochemical engineering and biotechnological processing, food science, analysis of food ingredients and final products, food processing and technology, oenology and waste treatment. The Journal is published by the University of Zagreb, Faculty of Food Technology and Biotechnology, Croatia. It is an official journal of Croatian Society of Biotechnology and Slovenian Microbiological Society, financed by the Croatian Ministry of Science and Education, and supported by the Croatian Academy of Sciences and Arts.
期刊最新文献
Supercritical CO2 Fluid Extraction and Microencapsulation of Oil from Anchovy (Engraulis mordax) By-Products. The Trend in Mitigation Strategies of 3-Monochloropropane-1,2-diol and Glycidyl Esters in Edible Vegetable Oils: Today and Tomorrow. Reduction of Total Phenols in Virgin Olive Oil as a Preservation Medium during Cold Storage of Whey Cheese and Tofu. Amino Acid Composition, Antioxidant and Antihypertensive Activity in Extracts from Mexican Añejo Cheese. Anti-Inflammatory Effect of Medicinal Fungus Antrodia cinnamomea Cultivated on Pinus morrisonicola Hayata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1